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Abstract

The Automated Assessment (AA) community, specialising in the automatic evaluation

of essays, has seen a recent rise in transformer-based models, popularised by BERT.

These neural-based models often outperform traditional feature-based approaches and

obviate the need for manual feature engineering. However, their need for large amounts

of annotated data is a serious bottleneck for the field.

While essay quality dimensions of syntax and grammar have been extensively studied,

other core aspects of writing, like cohesion, present a much bigger challenge. In this

study, we explore multi-task learning (MTL) as a possible novel solution to this imbalance

and build a neural-based system capable of scoring student essays along six different

dimensions of increasing complexity using the ELLIPSE dataset. These are conventions,

grammar, syntax, phraseology, vocabulary, and cohesion.

Our main finding is that MTL can in fact help improve the predictions for our considered

range of essay quality dimensions, and does so even for the most challenging amongst

them. We hope that, in turn, these results will lay the foundations for future AA systems

capable of providing comprehensive, multi-dimensional feedback to students and teachers

on essays, where prior work primarily focused on producing a single holistic score.
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Chapter 1

Introduction

Technology has altered the way in which we interact with people and placed a greater em-

phasis on written communication via text messages, emails, social-media posts, etc. This

change is driven by the rapid development of intelligent text entry systems and writing-

aid tools. From the keyboards of our smartphones (e.g., SwiftKey1), to our email (e.g.,

GMail2) and text editors (e.g., Overleaf3), they are everywhere, and seem to do every-

thing: from simple grammar-checking, and predictive suggestions of words and phrases,

to large-scale human-like text generation (e.g., OpenAI’s ChatGPT4).

The ubiquity of these systems is changing our relationship to writing, and will continue to

do so for the coming years, in ways we have yet to fully understand (Abbasi, 2020; Arnold

et al., 2020). Yet, writing remains a fundamentally human skill (Wen and Walters, 2022),

one that we must learn to enhance our academic and professional prospects (Arcon et al.,

2017). Until proven otherwise, technology will not replace the need for humans to be

proficient in writing. Instead, could we use machines to help us learn to write?

1.1 Context

Natural Language Processing (NLP) is the field which sits at the crossroads between

Machine Learning (ML) and Linguistics and aims to help computer systems under-

stand and manipulate language (Chowdhary, 2020). It has many uses, including the ones

we mentioned above, but if we set our focus on education, perhaps its most important

application is Automated Assessment (AA) (Ke and Ng, 2019), a field which pushes

the limits of machine-assisted learning a little further every day.

1 See https://www.microsoft.com/en-us/swiftkey.
2 The release of the “Help Me Write” feature was announced by Google (2023) on the 10th May, just

a few years after SmartCompose (Chen et al., 2019).
3 The very software used to write this report comes with simple spell-checking capabilities. For more

information, visit https://www.overleaf.com/learn.
4 You can try ChatGPT via https://openai.com/blog/chatgpt.
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AA consists in the automatic evaluation of human writing (Mayfield and Black, 2020).

Originally used to alleviate the marking load of standardised tests such as TOEFL and

GMAT (Chodorow and Burstein, 2004; Chen et al., 2016), past AA work primarily focused

on holistic scoring: summarising the quality of an essay with a single score (Phillips, 2007).

More recently, AA research is turning to multi-dimensional essay scoring (Higgins et al.,

2004; Louis and Higgins, 2010; Somasundaran et al., 2014; Persing and Ng, 2014; Kaneko

et al., 2020): breaking down single holistic scores into several essay quality dimension

scores (coherence, syntax, relevance to prompt, etc.) to better highlight the strengths

and weaknesses of a student’s writing (Ke and Ng, 2019). This switch is encouraging the

emergence of automatic systems which provide richer essay evaluations (Burstein et al.,

2004) which are slowly making their way into the classrooms where quick personalised

formative feedback is particularly valued (Wilson and Roscoe, 2020; Li et al., 2014).

Traditionally, research in AA prioritised simple feature-based approaches, but with the

recent surge of interest in the transformer architecture (Vaswani et al., 2017), neural

networks have gained favour (Taghipour and Ng, 2016; Alikaniotis et al., 2016; Mayfield

and Black, 2020). These perform on par with feature-based systems, and eliminate the

need for expensive feature engineering. This gain comes at the cost of needing increasingly

large quantities of annotated data for training and an inherent lack of interpretability of

the models and their results (Hall et al., 2017; Du et al., 2019).

Unfortunately, the different dimensions of essay quality are not equally studied or simple

to evaluate (Ke and Ng, 2019). While the detection of grammatical and mechanical errors

has been extensively and successfully explored (Chen et al., 2020), dimensions of coherence

(Higgins et al., 2004), thesis clarity (Persing and Ng, 2013), and persuasiveness (Stab and

Gurevych, 2014) remain challenging discourse-level problems to this day which require

deep linguistic understanding capabilities, far surpassing those of current state-of-the-art

essay scoring systems (Ke and Ng, 2019).

1.2 Approach and Contributions

To tackle the imbalance between essay quality dimensions, we propose to explore multi-

task learning (MTL). Inspired by how humans generalise situation-specific knowledge

to similar tasks (Ruder, 2017), MTL allows neural models to learn from multiple objec-

tives, leveraging information from related tasks to improve performance on tasks which

are considered harder or for which the data is limited (Caruana, 1993; Andersen et al.,

2021). In this study, we seek to investigate whether the theoretical merits of MTL show,

in practice, actual promise for multi-dimensional essay scoring.

We use ELLIPSE (Crossley et al., forthcoming), a corpus of argumentative essays written

by 8th to 12th grade English language learners (ELLs) (Arcon et al., 2017) in the United

States and scored according to six dimensions of essay composition (Cohesion, Syntax,
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Vocabulary, Phraseology, Grammar, and Conventions), which was published in the En-

glish Language Learning Feedback Prize Kaggle competition5 over six months ago. Since

this dataset is so young, no academic work has yet been published using it. Hence, our

first step is to establish a simple and reproducible baseline model trained, fine-tuned and

tested on ELLIPSE, which we make available to everyone who might pursue work on this

dataset in the future. Then, building on top of the baseline architecture, we design an

MTL neural system capable of scoring essays along the six dimensions simultaneously.

We evaluated this model against our baseline using the Pearson and Spearman rank cor-

relation metrics, and the Root Mean Square Error (RMSE), three performance measures

which are standard in the field of AA (Yannakoudakis et al., 2011; Ke and Ng, 2019), and

found that the MTL approach can in fact improve on the baseline, and, more importantly,

does so even for some of the trickiest of dimensions. Given the promise of these results,

we begin to motivate future work in MTL for multi-dimensional essay scoring.

1.3 Report Structure

Our project report is structured as follows:

Chapter 2: The Background chapter starts by briefly describing the task of automated

essay scoring and continues with an extensive coverage of the knowledge

required to understand the rest of the report.

Chapter 3: Next, we introduce the different bodies of research and key papers upon

which this study rests. Additionally, we give an overview of the common

evaluation strategies used for automated essay scoring systems which we will

employ in the evaluation of our models.

Chapter 4: In Methodology, we present our step-by-step approach to building an MTL

multi-dimensional essay scoring model starting from a simple holistic scor-

ing baseline. Here, the datasets and implementation details are carefully

described.

Chapter 5: This chapter is dedicated to the evaluation of our MTL model results. We

begin to analyse the potential benefits of the proposed approach and then

test our hypotheses in further experiments, and finally discuss the limitations

of our study.

Chapter 6: The Conclusion chapter summarises the study and its contributions, and

includes some ideas for future research.

5 See https://www.kaggle.com/competitions/feedback-prize-english-language-learning/data.
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Chapter 2

Background

This chapter lays the foundations of this project, introducing key Machine Learning (ML)

notions, and Automated Assessment (AA)-specific architectures, and metrics.

2.1 Learning

More and more we find ourselves surrounded by so-called intelligent systems which help

us in our everyday tasks (Markauskaite et al., 2022). Properly understanding how these

work is critical to building useful mental models (Lin et al., 2020) but, for many, the

question remains: what do we mean by machines that learn? “Can machines think?”

(Turing, 1950). Concretely, Mitchell (1997) offers the following definition:

Definition 2.1.1 (Machine Learning). A computer program is said to learn

from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with

experience E.

From the perspective of this project, we require a computer program, or model, to be

capable of learning how to automatically mark a written essay (T). That is, it should be

able to improve its ability to predict an essay’s true score, measured according to some

metric (P), by gaining experience from viewing correctly annotated essays (E). This essay

score can either be an overall grade or a mark for a particular dimension (e.g., cohesion).

The process of learning through experience is called training. In our case, provided a

set of correct essay–score pairs as input, the computer program tries to approximate the

function, or hypothesis, which best describes the relationship between the input features

(written essays) and the target values (correct essay scores). We denote training set the

labelled set of data provided to the program for experience gain during training.
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This particular setting is called supervised learning and differs from semi-supervised,

unsupervised or reinforcement learning methods which do not (solely) rely on annotated

training data to learn. Whichever form of learning we choose, the model can, once trained,

be applied to unseen essays whose scores are unknown to the model during testing. This

is called the test set, and our system’s performance can be measured by comparing the

automatically predicted scores it outputs for that set to the scores awarded by human

markers on the same essays. We call the latter the gold standard (Williamson et al.,

2012b). Since virtually all state-of-the-art AA systems are supervised, it is also how we

will approach our task. For the application of other learning approaches within the field,

refer to Chen et al. (2010) and Wang et al. (2018).

In the next section, we introduce an off-the-shelf supervised learning algorithm typically

used for training AA models: regression.

2.2 Regression

So far, we have described our task as automatically predicting essay scores, which are, in

effect, real-valued variables. This is called a regression task and differs from classifica-

tion which assigns discrete labels (e.g., CEFR levels1) instead. We will be focusing on

regression in this study but classification tasks do in fact exist within the field of AA. See

Rudner and Liang (2002), Farra et al. (2015), Vajjala (2017), and Nguyen and Litman

(2018) for related work.

There exists several different supervised learning algorithms for regression: (1) linear re-

gression (Page, 1966; Landauer et al., 2003; Miltsakaki, 2004; Attali and Burstein, 2006;

Beigman Klebanov et al., 2013; Faulkner, 2014; Crossley et al., 2015; Beigman Klebanov

et al., 2016), (2) support vector regression (Persing et al., 2010; Persing and Ng, 2013,

2014, 2015; Cozma et al., 2018), and (3) sequential minimal optimisation (SMO)

(Vajjala, 2017), have notably been used for automated essay scoring. Here, we introduce

only (1) which is defined as the task of learning the best linear hypothesis function

to describe our training data. This function can be either univariate in its simplest form

(one input feature), or multivariate.

In practice, suppose that for each written essay in the training set, we obtain a single

real-valued input feature vector through some process (more on this in Section 2.4). Given

such a vector x, we define the linear hypothesis function hw as:

hw(x) = w0 + w1x1 + · · ·+ wNxN , (2.1)

1 Common European Framework of Reference for Languages (North and Piccardo, 2020) levels corre-
spond to language proficiency levels ranging from A1 (elementary) to C2 (complete proficiency) from a
second-language learner’s perspective.
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which also happens to be the definition of a linear function in N variables (Jacob, 1995).

Here, N is the size of the training set, and the real-valued coefficients of w = [w0, · · · , wN ]

are parameters which essentially define the hypothesis function. These are the weights,

and w0 is the bias term,2 and they need to be learned to obtain the best possible fit to the

training data, or equivalently, to minimises some sort of loss or cost (a penalty resulting

from a bad prediction) on the training set. Only then can we predict y, the score of the

original written essay corresponding to x, as accurately as possible. For this, we can use

the Least Squared Error (LSE) function summed over all training examples and take

the square root:

Cost(hw) =
N∑
i=1

LSE(yi, hw(xi)) =
1

2N

N∑
i=1

(yi − hw(xi))
2, (2.2)

where for all 1 ≤ i ≤ N , we denote xi the feature input vector of the i-th training example

and yi its corresponding predicted score. This cost function is also known as the Mean

Squared Error (MSE) and amounts to solving the following optimisation problem:

w∗ = argmin
w

N∑
i=1

Cost(yi, hw), (2.3)

where w∗ corresponds to the best vector of weights.

Gradient descent is a popular optimisation algorithm which can be used to solve this.3

We start by choosing any point w in the weight space at random.4 Then, we simulta-

neously update each individual weight until we converge on the minimum possible loss,

using the following weight-updating formula:

wj ←− wj − α
1

N

N∑
i=1

xi,j(yi − hw(xi)) (2.4)

where α is called the learning rate, and xi,j is the j-th element of the i-th example in

the training set. There exists a multitude of different ways of evaluating linear regression

model performance. Taking the square root of Equation (2.2) yields another popular cost

function called the Root Mean Squared Error (RMSE) (Karunasingha, 2022), which

we will meet again in later chapters.

2 Adding a bias weight, independent of any of the input features, ensures that the hypothesis function
can be fitted to data that does not pass through the origin. This term is omnipresent in ML but adds
little to what we wish to convey here. Hence we will, for the most part, ignore it.

3 There exists other, faster optimisation techniques but they are beyond the scope of this study.
Further, this optimisation problem can also be solved analytically (Russell and Norvig, 2003, Sections
18.6.1 & 18.6.2).

4 Random initialisations of parameters are frequent in ML techniques and responsible for the stochas-
ticity of the models we will be using. It is the reason why we will need to fix a random seed value in our
experiments (Section 4.1.4).
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In regression, we distinguish three parts: a parameterised model, some data and an

optimisation strategy (a way to find the optimal weights). We will continue to see this

triptych as we move on to more advanced methods. Next, we take a look at the basic

feed-forward neural network, a natural extension of linear regression.

2.3 Artificial Neural Networks

The artificial neural network is one of the oldest ML techniques (Pomerleau, 1988),

dating back to the late 1940s, shortly after World War II. Inspired by the neurosciences of

the time, early models drew from nature (McCulloch and Pitts, 1943): modelling think-

ing and learning as electrochemical signals propagated through a network of brain cells

(neurons). Those who sought faithful and realistic representations became the pioneers

of modern computational neuroscience (Russell and Norvig, 2003). Others turned their

attention to the abstract properties of neural networks: their ability to tolerate noise,

perform parallel distributed processing, and learn (Rosenblatt, 1958), giving birth to Ar-

tificial Intelligence (AI).

NLP was born out of AI from a desire to grant machines the ability to understand and

interpret human language (Chowdhury, 2005). The field has evolved massively and neural-

based models have achieved stunning results in various NLP tasks, including AA (Ke and

Ng, 2019), the focus of this study.

2.3.1 Definition

An artificial neural network is, in essence, a weighted graph (Diestel, 2017, Section 1.1)

whose edges may be undirected, but are more commonly directed forward as in Figure

2.1. It is formed of an input layer, a number of intermediate hidden layers, and an output

layer. Each is composed of a certain number of nodes (also called units or neurons) and

their associated activation functions (Section 2.3.2). All units can be interconnected to

every other node of the direct neighbouring layers and a numeric weight is associated to

every one of these links determining the strength and sign of the connection. These can be

collected to form a weight matrix W(l) within any single layer l. Together, the weight

matrices of a neural network are the parameters we will want to learn during training.

Neural networks and linear regression (Section 2.2) share much of the same mathematics:

we can think of neural networks as hypothesis functions hW parameterized by the set of

their weight matricesW . They are, however, more powerful. A minimal neural network, of

at least one single hidden layer, can learn any function, including non-linearities (Jurafsky

and Martin, 2021, p.134). This is not the case of linear regression, which assumes linearity.

Multi-layer networks can also represent learning problems with multiple outputs. In such

cases, we should think of the networks as implementing a vector function hW with a target

output vector y rather than a scalar function hW and scalar prediction y.

14



Figure 2.1: A simple feed-forward fully-connected5 neural network architecture consisting
of an input layer of four neurons, one hidden layer of five neurons, and a single output
unit. Constant bias terms x0 and z

(1)
0 are added to all but the last layer, and the weight

matrices W(1) and W(2) for both non-input layers are also represented.

2.3.2 Training

To explain how a neural network learns, we focus on the simple feed-forward fully-

connected5 neural network presented in Figure 2.1, called a multilayered perceptron

(MLP). An MLP works by applying a linear transformation to an input followed by an

activation function6 to generate an output. More formally, given the input feature vector

x, the linear transformation for any non-input layer l is given by:

a(l) = W(l)x+ b(l), (2.5)

where b(l) is the layer’s bias vector term,2 and W(l) ∈ W . Then, the layer’s activation

function is applied to a(l) and determines which of the layer’s neurons should be ac-

tivated, that is, which neuron’s input is important to the process of prediction. This

yields the layer’s output, denoted z(l), which can either be the final output, or the input

to a subsequent layer. Compounded together, across all layers, they form the network’s

hypothesis function hW .

The act of training is to optimise the learnable parameters (Section 2.2), hereW , such that

some loss function is minimised. We do this to ultimately output y (e.g., the score of the

essay that has been input) during testing. This is also true for neural networks, although

5 For precise definitions of connectivity, refer to Diestel (2017, Section 1.4).
6 Activation functions are typically either hard thresholds, or logistic functions. See Russell and

Norvig (2003, Figure 18.17) for reference.
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the way in which this is achieved differs slightly. In short, we use a learning mechanism

called back-propagation which allows the MLP to iteratively adjust its weights during

training (Russell and Norvig, 2003, Figure 18.24). This method generally uses gradient

descent as its optimisation strategy, which completes our ML triptych (Section 2.2).

2.3.3 Fine-Tuning

In practice, the architecture of the neural network will depend on the nature of the task

at hand, as well as that of the inputs and outputs. The number of units in every layer, the

number of hidden layers, and the nature of the activation functions, can all be changed.

These are some of the network’s hyper-parameters, which also include:

(1) the learning rate α defines by how much a network updates its parameters during

training as we saw in Equation (2.4);

(2) the number of epochs is the number of times the network will pass through the

entirety of the training set during training;

(3) the sequence length s caps the length of the essays that will be input to the model;

(4) the batch size refers to the number of data entries given to the network before the

network updates its weights according to a loss.

Hyper-parameters determine how the network is trained. The above is not an exhaustive

list but rather some of the most common which we will use in our experiments. For an

in-depth discussion, see Goodfellow et al. (2016, Chapter 8).

The process of hyper-parameter optimisation or tuning, which consists in finding

the set of optimal hyper-parameters for a model, is an integral part of the development of

an artificial neural network. Here, we will refer to it by the broader term of fine-tuning

(Jurafsky and Martin, 2021, Section 11.3). For a survey of hyper-parameter optimisation

algorithms, see Yu and Zhu (2020). There exists many facets to this practice, but none

particularly stand out as the best within AA (Mayfield and Black, 2020, Section 3). In this

study, we adopt the simplest: we will first manually initialise a model’s hyper-parameters

(using standard value ranges), train the model on our training set, and then evaluate

it on a separate set of annotated data called the validation set (we discuss evaluation

strategies in Section 3.4). Then, based on the evaluation results, we will update the

hyper-parameter values, re-train the model and re-evaluate it on the training set. We will

repeat this process in a sort of binary search of the best set of hyper-parameter values.7

Only upon settling for one such set will we test our model (Section 2.1).

7 Note that what we call the best model setting is potentially not actually the best in the whole world
of possibilities, but one that does emerge as better than the ones we have tested.
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2.3.4 Regularisation

Over-fitting occurs when a model learns a hypothesis function that is too closely fitted

to the training data (Ying, 2019). We defined the act of learning as finding the best

function to describe our training data but learning too well means that our model cannot

generalise well when presented with new data (e.g., the test set) defeating its original

intended purpose. This can happen for a number of reasons: for example, when trained

for too long (i.e., the number of epochs is too high) or when the model is too complex

and starts to account for the noise (irrelevant information) in the training set.

Regularisation methods typically address this problem by reducing the complexity of

the network during training. For transformers, we can use Dropout (Srivastava et al.,

2014). This method consists in dropping some units at random in each layer which com-

pels the nodes to learn to fix the mistakes of other nodes. Dropout can also be applied to

a single layer in dropout layers: these ignore some parts of their inputs during training

with a probability defined by the dropout rate. Another way to reduce complexity is

to set the weight decay hyper-parameter. Suppose we want to add all the parameters

(weights) of our model to the loss function to penalise complexity. Since weights can be

both negative and positive, we take their square, sum them together, and then multiply

the sum by a small number (the weight decay) to control how large this number is com-

pared to the loss, and finally add it to the loss. There exists many more regularisation

strategies out there, but we will only refer to these two in our experiments. For a full

survey on regularisation, see Moradi et al. (2020).

In this section, we gave a very brief introduction to neural networks. For a more detailed

overview, we refer the reader to Goodfellow et al. (2016, Chapter 6) and Hastie et al.

(2009, Chapter 11). Next, we look at how we can draw on the power of neural networks

to learn features from linguistic data and finally shed some light on the nature of our

model inputs: how do we go from written essays to feature vectors x?

2.4 Word Embeddings

It is well known that computers, and by extension models, only understand and manipu-

late numerical representations (numbers, vectors, matrices, etc.). However, as suggested

in the name, NLP demands that we process natural language (sequences of letters and

symbols). We thus need some way to convert words into numbers, or more specifically,

into vectors. As with traditional vectors, these could then be subjected to many kinds

of mathematical operations—from simple addition and subtraction, to complex similarity

measures, and many more—making them particularly easy to integrate with existing ML

algorithms and techniques (Almeida and Xexéo, 2019).
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Word embeddings have become central to the development of NLP (Camacho-Collados

and Pilehvar, 2020). They provide intuitive, powerful and efficient feature representations

of language, and are formally defined by Almeida and Xexéo (2019) as:

Definition 2.4.1 (Word embeddings). Dense, distributed, fixed-length word

vectors, built using word co-occurrence statistics as per the distributional

hypothesis.

Here, the distributional hypothesis is the idea that the meaning of a word can be inferred

from the contexts in which it appears, without necessitating any knowledge of the real

world (Jurafsky and Martin, 2021). As Firth (1957) puts it: “a word is characterised by

the company it keeps”. So, words which appear in similar contexts may display similar

meanings. This suggests that a word’s embedding does not need to be specified by hand

and can instead be learned on a training corpus (Almeida and Xexéo, 2019), paving the

way for neural-based embeddings.

2.4.2 Static Embeddings

The CBOW and Skip-Gram neural network models proposed by Mikolov et al. (2013a)

were some of the first neural approaches for word embeddings. They were part of the

Word2Vec statistical algorithm which could learn word embeddings based on local statis-

tics (Mikolov et al., 2013a,b). See 2.2. Alternatively, Pennington et al. (2014) proposed

the GloVE algorithm which focused instead on word co-occurrences across a corpus (global

statistics). However useful these approaches turned out to be, they could only compute a

fixed vector representation for each given word, i.e., static word embeddings. For ex-

ample, given “great, blue waves” and “she waves goodbye”, waves would be represented

by a single static embedding, even though it is used in two different sentences, in two

different ways (noun and verb), and with two different meanings (the curling of a body

of water and the act of moving one’s hand to and fro).

2.4.3 Contextual Embeddings

Various attempts to generate context-dependent word representations (Neelakantan et al.,

2014; Melamud et al., 2016; McCann et al., 2017) were made, culminating in the emergence

of contextual embeddings such as ELMo (Peters et al., 2018) and BERT (Devlin

et al., 2019). Unlike static embeddings, every word is assigned to an individual contextual

embedding based on the direct context it is used in. Coming back to our previous example,

each use of waves would be assigned a different representation. By encoding the syntactic

and semantic properties of words in context, they capture deep linguistic knowledge that

can be transferred across languages (Liu et al., 2020).
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Figure 2.2: Plot of all Word2Vec (Mikolov et al., 2013a) pre-trained word embeddings
(71,291 word vectors long of 200 dimensions) reduced to three-dimensions using Principal
Component Analysis (PCA)9. Each point in space is associated to a single word, and
coloured by the number of occurrences (count) of that word in the original training corpus.

Once learned, word embeddings can be used to identify and understand words encountered

in new tasks. Such pre-trained word embeddings are now commonly used in ML models

(Wang et al., 2022) and have significantly helped improve the performance of downstream

NLP applications such as named-entity recognition (Pennington et al., 2014), part-of-

speech tagging (Collobert et al., 2011), question answering (Xiong et al., 2017), but also

automated essay assessment (Alikaniotis et al., 2016; Cozma et al., 2018). But, what if we

encounter new words during testing? We cannot possibly compute embeddings for them

as we have been doing, yet we still need some way to manipulate the language. This is

the out-of-vocabulary (OOV) problem (Schuster and Nakajima, 2012). Our solution

is to use tokens.

2.4.4 Tokenisation

Manning et al. (2008, Section 2.2.1) defines a token as “a sequence of characters in some

particular document that are grouped together as a useful semantic unit for processing”.

Hence, tokenisation is the process of splitting a text into tokens. Once we obtain a split,

every unique token is assigned a unique embedding, called an id, to form a vocabulary

(a sort of look-up table). By converting all tokens to their respective ids, we obtain a

fully numerical representation of the original input text, which can be passed into a neural

neural network for example.

9 The image was generated using TensorBoard’s Embedding Projector which can be accessed from:
https://www.tensorflow.org/tensorboard/tensorboard projector plugin.
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Traditional approaches mostly looked at tokens as words (Manning et al., 2008, Section

2.2.1), which is not enough to address the OOV problem (Schuster and Nakajima, 2012).

Modern tokenisation techniques, such as WordPiece (Schuster and Nakajima, 2012) and

SentencePiece (Kudo and Richardson, 2018), now split long, complex or rare words

into smaller parts, sometimes throwing away certain characters (e.g., punctuation) to

form sub-word tokens. These are generally assumed to solve the OOV problem (Moon

and Okazaki, 2021) since smaller tokens are more likely to have been seen previously.

In this work, we will be using some version of the Byte Pair Encoding (BPE). This ap-

proach looks for the most common pair of consecutive bytes (letters or symbols) within

a text and replaces this pair with a new single unused character (byte), repeating the

process until no further compression is possible. Originally introduced by Gage (1994),

BPE was later adapted by Sennrich et al. (2016) to open-vocabularies, allowing one to

obtain embeddings for novel words. Tokenisation is an integral part pre-processing in

NLP, where obtaining a corpus which encompasses all words in all their meanings in all

possible contexts is infeasible.10

In the next section, we briefly introduce the transformer architecture which is one of

the principal building blocks for the model we will be presenting in this study, and behind

many of the models for contextual embeddings.

2.5 Transformers

First introduced by Vaswani et al. (2017), the transformer architecture has since become

the foundation for many state-of-the-art NLP models (Lin et al., 2022), including the

popular BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019) models. It is based

on a self-attention mechanism, which allows the model to focus on different parts of

the input and learn the relationships between them. Thus, the transformer is able to

capture the long-range dependencies needed to learn, amongst other things, contextual

word embeddings.

A transformer is composed of two main parts: an encoder and a decoder, on the

left and on the right of Figure 2.3 respectively, and a big advantage of transformers is

these can be separated and used as two independent models. Before passing data to

the encoder, the input is pre-processed and converted to a first numerical representation

using tokenisation (e.g., BPE). Then, the tokenised input is passed to an attention-based

encoder which generates the context-dependent representations for each word that will

be used by the decoder during training. For more details on the inner workings of the

transformer, refer to Vaswani et al. (2017).

10 This is a reference to Zipf’s Law and the data sparsity problem. See Piantadosi (2014) for a discussion
on the topic within NLP.
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Figure 2.3: Transformer model architecture. Source: Vaswani et al. (2017).

As discussed in Section 2.4.3, relying on another algorithm to learn embedding representa-

tions for the words in our input (e.g., a training set of essays) is an instance of pre-training

(Jurafsky and Martin, 2021, Section 7.4). But pre-trained word embeddings were only the

beginning: when pre-trained on large enough datasets, the transformer architecture en-

ables models to learn deep, universal language representations (Zhao et al., 2023). At this

scale, the linguistic knowledge accumulated by these large language models (LLMs)

for one type of NLP task can be reused for another (Nadas, 1984; Chen and Goodman,

1999; Thrun and Pratt, 2012; Wang et al., 2022). This is a “paradigm shift” (Sun et al.,

2022). A new wave of pre-trained contextual encoders was born, upon which state-of-

the-art models were rapidly developed for many downstream NLP tasks (Qiu et al., 2020;

Zhou et al., 2023), including AA (Ke and Ng, 2019).

This line of work is where we begin to situate our study.
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Chapter 3

Related Work

In this chapter, we position our project within the spheres of Automated Assessment (AA)

and Multi-Task Learning (MTL) and capture the motivation for a system that could unite

the two together.

3.1 Written Assessment

Developing deeply formative exams is hard, though many would agree that open-ended

questions are generally better-suited to the task (VanderVeen et al., 2007; Graesser et al.,

2009). It gives students the opportunity to actively generate knowledge, articulate difficult

concepts, and engage in problem-solving (Magliano et al., 2007), which are generally not

emphasised in multiple-choice exams (Magliano and Graesser, 2012). By shining a light

on the strengths and weaknesses of students, instructors can provide fine-grained and

personalised feedback, which is far more useful than a single overall mark for the students’

growth (Shute, 2008).

Unfortunately, the cost of assessing written work weighs heavily on teachers, schools and

institutions, who find themselves caught between the desire of assigning more written

tasks and having to be less thorough in marking them (Miller, 2003). Further, consis-

tency, objectivity and reliability are particularly tricky to attain for human markers, es-

pecially when marking long essays which are particularly prone to disagreements between

examiners (Brown, 2010).

By threatening the frequency and quality of written assessments in education, these limi-

tations pose a serious issue. Indeed, Stein et al. (1994, p.392) suggests that many writing

disabilities are the consequence of too little time being dedicated to writing instruction

and assessment. Given the importance of the writing skill in securing education and work

opportunities (Council, 2013; Craighead et al., 2020), we must place written assessment

at the heart of our educative systems (Defazio et al., 2010; Rao, 2019; Deane, 2022).
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Automating the marking process could help us address some of these issues (Magliano

and Graesser, 2012). It is what motivates this project, and the field of AA more widely.

Additionally, given the importance of fine-grained feedback in a student’s development

(Deane, 2022; Woods et al., 2017), providing feedback is one of the drivers of this study,

which has not always been addressed by the AA research community, as we will see in

the next section.

3.2 Automated Assessment

The origins of AA can be traced back to the early 1960s (Daigon, 1966; Page, 1966; Page

and Paulus, 1968; Page, 1994; Larkey, 1998) amidst rising issues in large-scale standardised

tests such as TOEFL, IELTS and GMAT (Chodorow and Burstein, 2004; Chen et al.,

2016). Issues of speed, cost, and consistency (as seen in Section 3.1), which had always

been true of written assessment, began to scale (e.g., the number of candidates for the

IELTS have grown exponentially over the last 30 years; Read, 2022) requiring expansive

logistical efforts to mark thousands of essays under very short time-frames.

The possibility of alleviating the marking workload has made research in AA particu-

larly attractive. As a result, an impressive body of literature on the implementation

and evaluation of AA systems was developed, including Attali et al. (2008), Shermis

and Burstein (2003), Burstein et al. (1998a), Burstein et al. (1998b), Burstein (2007),

Burstein et al. (2010), Coniam (2009), Dickinson et al. (2012), Higgins et al. (2006),

Kakkonen et al. (2004), Kakkonen and Sutinen (2008), Larkey (1998), Miller (2003),

Leacock and Chodorow (2003), Phillips (2007), Williamson et al. (2012b), Phandi et al.

(2015), Crossley et al. (2015), Dong and Zhang (2016), Song et al. (2020), Yang et al.

(2020), Dasgupta et al. (2018), Uto et al. (2020), and Sharma et al. (2021). At first,

research primarily focused on summarising the quality of an essay with a single score

(e.g., the Intelligent Essay Assessor™; Landauer et al., 2003) in response to the needs of

standardised tests (Phillips, 2007). As interests gained the classrooms, holistic approaches

fell short in terms of providing formative feedback to students (Carlile et al., 2018).

3.2.1 Dimensions of Composition

Recent developments in Natural Language Processing (NLP) and Machine Learning (ML)

have opened the door to new promising applications for research in Automated Assessment

(Chen et al., 2019). The field is turning to scoring along different dimensions of quality

to help students identify which aspects of their writing need improvement (Ke and Ng,

2019). Dimensions such as the detection of grammatical and mechanical errors (Kaneko

et al., 2020; Chen et al., 2020; Raina et al., 2022), but also relevance to prompt (Louis

and Higgins, 2010; Persing and Ng, 2014), organisation (Persing et al., 2010), coherence

(Higgins et al., 2004; Miltsakaki, 2004; Burstein et al., 2010; Somasundaran et al., 2014;
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Carlile et al., 2018), thesis clarity (Persing and Ng, 2013), and argument persuasiveness

(Stab and Gurevych, 2014; Persing and Ng, 2015; Ke et al., 2018), have notably been

studied. We include a more extensive list of the dimensions involved in the composition

of an essay in Table 3.1, as we will refer to them often.

Table 3.1: Dimensions of essay quality ranked from simplest to most difficult to capture.
Source: Ke and Ng (2019, Table 1).

Dimension Description

Grammaticality Grammar
Usage Use of prepositions, word usage
Mechanics Spelling, punctuation, capitalisation
Style Word choice, sentence structure variety
Relevance Relevance of the content to the prompt
Organisation How well the essay is structured
Development Development of ideas with examples
Cohesion Appropriate use of transition phrases
Coherence Appropriate transitions between ideas
Thesis Clarity Clarity of the thesis
Persuasiveness Convincingness of the major argument

In 2022, the Hewlett Foundation and the Learning Lab Agency1 co-sponsored a com-

petition on Kaggle called the Feedback Prize - English Language Learning,5 in which

participants were asked to design systems which could evaluate student essays along the

six essay quality dimensions of their newly published ELLIPSE dataset (Section 4.2.1).

Such a system could help students identify which specific dimension of their writing need

improvement. Up until this point, essay dimensions had generally been studied one at

a time. Motivated by recent advances in ML, our study looks at doing just what the

competition demands: scoring student essays along multiple dimensions, in a hopefully

novel way.

3.2.2 Machine Learning Approaches

Up until recently, the field of AA mainly focused on developing effective hand-crafted

feature-based models (Craighead et al., 2020) like grammatical errors, (Yannakoudakis

et al., 2011; Andersen et al., 2013), distinctive words or part-of-speech n-grams (Page and

Paulus, 1968; Attali and Burstein, 2004; Bhat and Yoon, 2015; Sakaguchi et al., 2015), to

predict essay scores. With the recent surge of interest in neural networks, transformer-

based systems (Taghipour and Ng, 2016; Alikaniotis et al., 2016; Mayfield and Black,

2020) have gained favour. Pre-trained word embeddings (Section 2.4) now serve as input

to neural networks which then perform regression to predict an essay score (Alikaniotis

et al., 2016; Taghipour and Ng, 2016; Dong et al., 2017; Jin et al., 2018). Such systems

1 See https://www.the-learning-agency-lab.com.
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perform on par with previous approaches, and obviate the need for expensive feature

engineering (Ke and Ng, 2019; Craighead et al., 2020; Qiu et al., 2020).

Unfortunately, neural-based approaches require large amounts of annotated training data

(Zhang et al., 2021) which can be a problem for multi-dimensional essay scoring since

all dimensions are not equally studied or simple (Table 3.1). We hope to address this

problem using a multi-task learning (MTL) approach (Caruana, 1993).

3.3 Multi-Task Learning

MTL is a paradigm which “improves learning for one task by using the information

contained in the training signals of other related tasks” (Caruana, 1997, Chapter 1). See

Figure 3.1 for the most common example of an MTL neural network called a hard-

parameter sharing model (Caruana, 1993; Ruder, 2017). Note that the number of

hidden layers can still vary (Section 2.3), and the number of shared or task-specific layers

can also be changed.2

Figure 3.1: Simple multi-task learning neural network architecture. The input and hidden
layers are shared, and the output layers are specific to each task. Source: Ruder (2017)

By sharing representation between similar tasks, MTL approaches can help models learn a

more general, and potentially richer, set of linguistic features (Sanh et al., 2018) without

relying on any real world knowledge (e.g., external linguistic annotations in NLP) at

inference time (Craighead et al., 2020). This improves the generalisation capabilities of

MTL models, that is, their capacity to adapt to previously unseen data (Caruana, 1997,

Chapter 7), and boosts their performance on tasks that are generally harder, or for which

we have limited amounts of data (Caruana, 1993; Andersen et al., 2021).

2 In fact, there exists many more MTL architectures, but this is beyond the scope of this study. Refer
instead to Ruder (2017) for an in-depth overview of multi-task learning neural networks.
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This is particularly interesting from the perspective of multi-dimensional essay scoring

which we are interested in, and suggests that MTL could help address the complexity

and data imbalance between dimensions (Section 3.2.1). In fact, MTL has already been

successfully applied across all applications of machine learning (Ruder, 2017) including

NLP (Collobert and Weston, 2008), and more particularly to AA for grammatical error

detection (Rei and Yannakoudakis, 2017), automated scoring of learner English essays

Cummins and Rei (2018), as well as automated grading of transcripts of spoken language

(Craighead et al., 2020). The theoretical merits of MTL, and the promise of these past re-

sults, motivate us to investigate this approach for multi-dimensional essay scoring, which,

to the best of our knowledge, has not been done before.

3.4 Evaluation strategies

Within the field of AA, the evaluation of scoring systems has traditionally been carried

out by comparing the systems’ predicted scores to a gold standard (Section 2.1). Some

of the most common metrics include:

(1) the correlation between predicted and human scores, using for instance the Pearson

or Spearman rank correlation coefficients (Pearson, 1896; Spearman, 1961);

(2) error metrics such the Mean Squared Error (MSE) and the Root Mean Squared

Error (RMSE) (Tyagi et al., 2022) which we encountered in Equation (2.2).

In this study, will use only the aforementioned metrics. We do this to facilitate com-

parison with prior research (Section 3.2). See Appendix A for the definitions of (1), and

otherwise refer to Williamson et al. (2012b) and Yannakoudakis and Cummins (2015) for

an extensive discussion on evaluation frameworks for AA.

In this chapter, we have situated our study within its wider research context, drawing

from prior work in Education, AA and ML. We have clearly described the gap we want to

address in this work, and in doing so, introduced the techniques and evaluation strategies

which we will use in our upcoming experiments.
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Chapter 4

Methodology

In this chapter, we describe our approach towards building a successful multi-dimensional

essay scoring multi-task learning (MTL) system. We comment on our design journey in

order of implementation. As such, the chapter is made up of three main sections. The

first is dedicated to choosing a baseline from a series of models on a simple essay scoring

task, the second to building a multi-dimensional baseline from this baseline model, and the

last to establishing an MTL system atop our baseline models.

4.1 Essay Scoring Baseline

In the previous chapter (specifically Section 3.2) we presented an extensive body of Auto-

mated Assessment (AA) research upon which this study rests. Where prior work mostly

focused on holistic scoring, we look at multi-dimensional essay scoring, using the very

recently published ELLIPSE dataset (Crossley et al., forthcoming). This dataset has, to

the best of our knowledge, not yet been used in any published work. We therefore need

to construct our own original baselines for evaluation, while still anchoring ourselves in

the common practices of AA. We do this in two ways: by using a classical essay scor-

ing dataset (Ke and Ng, 2019), namely CLC FCE (Yannakoudakis et al., 2011), and

employing proven machine learning (ML) methods (Section 2.5).

4.1.1 CLC FCE Dataset

The Cambridge Learner Corpus1 (CLC), part of the Cambridge English Corpus2 (CEC),

was developed jointly by the Cambridge University Press and Cambridge Assessment. For

our baseline, we used the CLC FCE dataset (Yannakoudakis et al., 2011), a collection of

1,244 exam scripts written by English language learners (ELLs) from around the world

who sat the Cambridge English for Speakers of Other Languages (ESOL) First examina-

1 To access the dictionary, see https://dictionary.cambridge.org/dictionary/learner-english/.
2 To learn more about the initiative, refer to https://www.cambridge.org/corpus/.
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tions (now known as B2 First3) between 2000 and 2001. The writing component of the

examination consists of two essay tasks asking students to write either a letter, a report,

an article, a composition or a short story, of 200 to 400 words.

The dataset includes the original written answers, transcribed and anonymised but oth-

erwise unmodified, as well as linguistic error annotations which follow a taxonomy of 77

error types by Nicholls (2003), and some demographic data (first language, age bracket).

Additionally, the corpus entries include the candidates’ overall exam scores in the range

0–40 which have been fitted to a RASCH model (Fischer and Molenaar, 2012), as well as

a breakdown of their individual marks for each of the two exam tasks. The authors pro-

vide little information about the latter marks. What looks like decimal grades between

0 and 5.3 are actually band scores which follow the General Impression Mark Scheme

(of Cambridge. ESOL Examinations and of Cambridge. Local Examinations Syndicate,

1978, p.28). They are slightly more fine-grained than what is presented in the FCE hand-

book for teachers: for example, a score of 5.3 indicates the highest level within band 5,

and a score of 5.1 the lowest subdivision within band 5. These slightly more fine-grained

marks can be directly mapped to a 0–20 linear scale, where 0 signifies 0 and 5.3 signifies

20, which is ideal for a regression task. Similarly to Yannakoudakis et al. (2011), we use

these in our experiments rather than the overall scores.

Recall that our task here is to build a model capable of learning how to automatically

mark these written exam tasks (Section 2.1). Here, we will use this dataset to train,

evaluate and compare a series of standard pre-trained models on a simple essay scoring

regression task to establish our project’s baseline. But first, we must perform the adequate

steps to process and prepare the data.

4.1.2 Pre-processing

In the CLC FCE dataset, the data for each candidate is stored in individual .xml files.

Interestingly, the linguistic error annotations are embedded into the original answers, so,

in order to parse and separate the original from the corrected texts, we borrowed two

helper functions4 from Sergio (2019), and dealt with the other data fields ourselves.

For our essay score prediction task, we only need the candidates’ original answers to the

two exam questions and the marks that were awarded to each of them. When parsing

the dataset, if the information for one of the two tasks was missing, we did not exclude

the candidate altogether, and kept the single task data entry that was present. If either

the original written text or the associated score was missing, the single task data entry

was omitted entirely. Note that the data was not always clean (e.g., some of the task

scores included additional letter characters). We stripped the marks of all such noise, and

dropped those entries whose marks were still not numbers after processing.

3 For additional information, go to https://www.cambridgeenglish.org/exams-and-tests/first/.
4 Specifically, the functions strip str() and recursive NS tag strip() in FCECorpusHandler.py.
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Table 4.1: Train, validation and test data split sizes (in number of task data entries)
after parsing and processing the CLC FCE dataset (Section 4.1.2).

Split Train Validation Test

CLC FCE 1,727 371 370

Before parsing, the CLC FCE dataset contained a total of 1,244 candidate exam scripts,

for a potential of 2,488 task data entries (two exam tasks per candidate). In practice, seven

essays were missing, and after performing the above pre-processing steps, our final dataset

numbered 2,468 entries. These were then randomly split it into train, validation and test

sets using the train test split() function of the scikit-learn5 Python library. Table

4.1 shows the data split sizes (namely, 70/15/15% respective proportions of the data).

4.1.3 Models

To establish a baseline, we chose a non-exhaustive list of six transformer-based pre-trained

models and their associated pre-trained tokenisers imported from the HuggingFace Trans-

former library6 (Wolf et al., 2020) to be trained and fine-tuned on the previously obtained

train and validation sets, and finally evaluated against one another on the test set. Here

our intent was to find a good and easily reproducible baseline, and we felt that being

exhaustive was unfeasible and unnecessary. As such, we favoured some of the variants

of the pre-trained BERT model (Devlin et al., 2019), which have recently been used for

AA by Mayfield and Black (2020), Schmalz and Brutti (2021) and Beseiso (2021), are

particularly easy to use, and have, on many occasions, proven their worth to the wider

NLP community. See the surveys by Wang et al. (2022) and Zhao et al. (2023).

4.1.4 Implementation

Throughout this study, all of our experiments were run using the PyTorch7 (Paszke et al.,

2019) ML framework, on NVIDIA P100 GPUs made freely available by Kaggle. Further,

a random seed value of 42 was fixed for better reproducibility. Indeed, neural networks

non-deterministic, and randomness can play a major role in their results (Reimers and

Gurevych, 2017). This particular value was chosen in accordance with standard ML

practices8 without optimising for the best performance scores.

Each pre-trained model, and corresponding pre-trained tokeniser, was first imported from

the HuggingFace Transformer library6 setting the problem type to regression (Section

2.2). Then, using the model-specific tokeniser, we tokenised the candidate written answers

5 For the documentation, see https://pypi.org/project/scikit-learn/.
6 See https://huggingface.co.
7 The library can be access from https://pypi.org/project/torch/.
8 The number is a pop-culture reference to the popular science-fiction novel “The Hitchhiker’s Guide

to the Galaxy” by Adams (1995).
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using each model’s associated pre-trained tokeniser to obtain word embeddings which the

models could manipulate. The lengths of the original essays ranged from 243 to 2,532

characters. However, due to varying model limitations,9 we had to set a sequence length

for these (Section 2.3.3). Some answers had to be truncated while others were padded to

that value. Figure 4.1 shows a visual representation of this process.10

Figure 4.1: The template architecture and data flow for our holistic scoring baseline
models. Here, b denotes the batch-size, s stands for the sequence length to which inputs
are padded or truncated, and e is the model respective hidden embedding size.

Only after producing same-sized, model-specific embeddings for every dataset entry were

we able to train the models individually on the training set using the Trainer11 interface.

By default, Trainer implements theAdamW stochastic gradient descent optimisation

method, an Adam algorithm (Kingma and Ba, 2017) with weight decay fix, as intro-

duced by Loshchilov and Hutter (2019). Details of this algorithm will not be given in this

study; we only note that using models trained using AdamW optimisation has become the

standard, and generally yield better results than those trained without (Loshchilov and

Hutter, 2019). Further, we used each model’s default regression training loss, which was

generally the Mean Square Error (MSE) introduced in Equation (2.2), implemented with

the MSELoss() function (Section 2.2) from the PyTorch library7 (Paszke et al., 2019).

Finally, we set up Trainer such that the model weights would be saved after each epoch.

At the end of training, we load the set of model parameters for which the model predicted

scores are most correlated to the gold standard ones on the validation set using the

Pearson coefficient. We use a correlation metric here because we follow the authors of the

dataset, Yannakoudakis et al. (2011), who use both the Spearman and Pearson correlation

coefficients in the evaluation of their models.12

9 For example, BERT has a maximum context of 512 characters (Devlin et al., 2019).
10 Figures 4.1, 4.5 and 4.6 were made using the free online diagramming application called LucidChart,

which can be accessed from https://www.lucidchart.com/pages/.
11 See https://huggingface.co/docs/transformers/main classes/trainer for a full documentation.
12 Note here that we could have equally used the Spearman Rank coefficient for the best model weights’

choice.
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Our next step was to identify the different models’ best hyper-parameter settings by

individually evaluating each of them on the validation set. As mentioned in Section 2.3,

there exists a multitude of hyper-parameters. We consistently set the weight decay hyper-

parameter to the standard value of 0.0113 to keep fine-tuning as simple as possible, and

only varied the learning rate in the range 0.1 to 7.0e-5, the number of epochs from 3 to

10, the sequence length in the range 32 to 512 and the batch size between 8 and 32.

Table 4.2: Final hyper-parameter values for each of the different pre-trained models we
considered on the CLC FCE dataset.

Model Epochs LR Batch size Sequence length

xlm-roberta-base 3 5.5e-5 10 232
distilbert-base-cased 3 5.0e-5 16 512
distilbert-base-uncased 6 4.0e-5 16 300
bert-base-uncased 6 5.5e-5 16 232
bert-base-cased 6 4.0e-5 14 512
roberta-base 5 4.8e-5 16 500

We then picked the combination of hyper-parameters which yielded the best results14 in

terms of two different evaluation metrics: the Pearson and Spearman rank correlations

(Section 3.4) between the human-marked task scores and our models’ predicted ones, much

as was done by the dataset’s original authors Yannakoudakis et al. (2011). We also include

the Root Mean Squared Error (RMSE) metric (Sections 2.2 & 3.4), a standard accuracy

metric in ML (Karunasingha, 2022), for comparison. See Table 4.2 for a summary of the

best hyper-parameter values we used for each model. Finally, we ran the now fine-tuned

models on the test set. See Table 4.3 for the results.

Table 4.3: Performance of different fine-tuned pre-trained models on the CLC FCE test
set for three metrics (rounded to 3 figures after the decimal point). The models are
ranked from lowest to highest on the Pearson and Spearman’s rank correlation coefficients.

Model RMSE Pearson Spearman

xlm-roberta-base 3.059 0.516 0.475
distilbert-base-cased 2.495 0.618 0.588
distilbert-base-uncased 2.374 0.662 0.628
bert-base-uncased 2.284 0.670 0.629
bert-base-cased 2.253 0.672 0.651
roberta-base 2.354 0.673 0.668

The best results on the test set were consistently achieved using the pre-trained RoBERTa

model (Liu et al., 2019). The results reported in Yannakoudakis et al. (2011, Table 1)

13 Values of the regularisation hyper-parameter are generally kept between 0 and 0.1 (Kuhn and
Johnson, 2013, p.144).

14 For large batch sizes and/or sequence lengths, we sometimes exceeded CUDA’s memory limitations,
and our best results lie within those restrictions.
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on the same dataset are not directly comparable because they were computed on the

entire dataset. However, our correlation scores fall somewhere in their range of results.

Since the object of this study is to investigate the merits of the MTL approach, and

not necessarily building a state-of-the-art model, we deem our roberta-base regression

model good enough to build our baseline from.

4.2 Multi-Dimensional Baseline

In this section, we present how we extended our simple essay scoring baseline to a multi-

dimensional one; one that we could use in the evaluation of a future multi-task learning

model for multi-dimensional essay scoring. But first, we present the ELLIPSE dataset

which will be the basis for all of the remaining experiments.

4.2.1 ELLIPSE Dataset

The English Language Learner Insight, Proficiency and Skills Evaluation (ELLIPSE) Cor-

pus was released by the Vanderbilt University and the Learning Agency Lab1 in 2022 for

the “Feedback Prize - English Language Learning” Kaggle competition5 (Crossley et al.,

forthcoming). The public dataset contains 3,911 essays written by ELLs between the 8th

and 12th grade as part of state-wide standardised writing assessments in the 2018/19 and

2019/20 school years in the United States (US). Note that the dataset includes an addi-

tional test set comprising roughly 2,700 essays used in the evaluation of the competition

entries. We ignored this part of the data since it was not released to the public.

Figure 4.2: Score distribution of the different dimensions of the ELLIPSE dataset.
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The specificity of this dataset is that it is multi-dimensional. All essays were indepen-

dently marked by two examiners along six different dimensions of language: Cohesion,

Syntax, Vocabulary, Phraseology, Grammar, and Conventions. These six dimensions were

identified by teaching and research advisory boards of experts in the fields of composition

and ELL education as the principal components of language acquisition (Lab, 2023).

Each essay of the ELLIPSE corpus was scored by a minimum of two trained raters.

These were recruited in the Applied Linguistics and English departments of a large re-

search university in the US, and received further training for this particular annotation

task. Any disagreement between raters, defined as a difference equal to or greater than

two points in a particular dimension, was adjudicated in a discussion between the two

parties. The scores follow a 9-point Likert scale and range from 1.0 to 5.0 with incre-

ments of 0.5, where a maximal score in one of these dimensions signifies a native-like

proficiency for that aspect of the English language. We include the dataset’s annotation

guidelines in Appendix B. See Figure 4.2 for the resulting score distribution of the corpus.

In the next section we look at the pre-processing steps we had to take before properly

using the dataset.

4.2.2 Pre-processing

The ELLIPSE public dataset is stored as one large .csv file, where each line corresponds

to one data entry composed of the full text of a single essay identified by a unique

text id, along with a score for each of the six analytic measures. We parsed this file using

the Python function read csv() from the pandas15 library (McKinney et al., 2010).

Once parsed, we inspected the data (checking for NaN values, incorrect data types, etc.)

to find that it was clean. Thus, no entries were removed at this point.

4.2.3 Data Inspection

To the best of our knowledge, no academic paper has yet been published using ELLIPSE.

Hence, our first task was to properly inspect it, and found that its essays are on average

approximately 2,335 characters or 430 words long, for a maximal length of 6,044 characters

or 1,260 words, and a minimal length of 239 characters or 48 words. Additionally, we

computed detailed statistics for each dimension of the original dataset which we include

in Table 4.4. As you can see in Figure 4.2, all of the dimensions are roughly normally

distributed (Reid, 2013, p.38), and share similar parameters (µ ≈ 3, σ ≈ 0.65).

Beyond length, we were interested in what the distributions of the different dimensions

could reveal to us. Indeed, identifying the dimensions most closely related can potentially

inform some of our future design decisions; this is particularly true in MTL where task

15 For the documentation, see https://pypi.org/project/pandas/.
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Table 4.4: Mean and standard deviation (rounded to 3 figures after the decimal point)
of the different dimension distributions of ELLIPSE before (µ, σ) and after removing
outliers (µ′, σ′) in Section 4.2.4.

Dimension µ σ µ′ σ′

Cohesion 3.127 0.663 3.120 0.605
Syntax 3.028 0.644 3.015 0.577
Vocabulary 3.236 0.583 3.226 0.463
Phraseology 3.117 0.656 3.106 0.589
Grammar 3.033 0.700 3.023 0.645
Conventions 3.081 0.671 3.071 0.613

relatedness is an important topic of research (Ruder, 2017, Section 7.1). We do this using

correlation metrics (Appendix A): see Figures 4.3 and 4.4 for the Pearson and Spearman

rank correlation scores between the different dimensions of the ELLIPSE corpus.

Figure 4.3: Pearson correlations between the different dimensions of the ELLIPSE dataset
(rounded to 6 significant figures) using a graded colour scale.

Figure 4.4: Spearman rank correlations (rounded to 6 significant figures).
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Both the Pearson and Spearman rank correlation scores range from 0.55 to 0.66, a bracket

which sits in the strong positive relationship range (Zou et al., 2003). So, the different

dimensions are highly correlated making them good candidates for MTL. We note that

the strongest relationships are between Phraseology, and Vocabulary and Phraseology

dimensions, Grammar and Phraseology, and Syntax and Phraseology. Looking at the

scoring guidelines (Appendix B), Phraseology relates to the use of proper and diverse

linguistic constructions and phrases which can be linked to both the Usage and Style

dimensions identified by Ke and Ng (2019) in Table 3.1. Defined so, Phraseology seems

inherently linked to the lower levels and mechanics of essay composition which explains

that it should be most closely related to Grammar, Syntax and Vocabulary, as opposed

to, for example, Cohesion which looks at the overall organisation of an essay. This insight

into the dataset will be most useful in Section 5.2.

4.2.4 Outliers

Finally, adhering to good scientific practices (Osborne and Overbay, 2004), we looked at

identifying potential outliers within the dataset. Since the dimension-specific scores seem

to follow a Gaussian distribution, we used the standard interquartile range (IQR) method

(Chandola et al., 2009, Section 7): defining limits on the sample values that are a factor

of 1.5 of the IQR below the 25th percentile or above the 75th percentile. Table 4.5 shows

the accepted value ranges for each dimension, outside of which 296 dataset entries stand.

Table 4.5: Interquartile value ranges for the different ELLIPSE dimensions (rounded to
2 figures after the decimal point).

Cohesion Syntax Vocabulary Phraseology Grammar Conventions

Minimum 1.00 1.00 2.25 1.00 1.00 1.00
Maximum 5.00 5.00 4.35 5.00 5.00 5.00

Interestingly, the Vocabulary dimension was the only one to harbour outliers, mainly

because of its comparatively low standard deviation (Table 4.4). There is always some

debate over whether to remove outliers or not (Osborne and Overbay, 2004). On one

hand, it can be beneficial to the performance of resulting models (Acuna and Rodriguez,

2004), but on the other hand, it assumes that the dimension scores each follow a normal

distribution. This is not necessarily the case and indeed, these outliers seem to legitimately

belong to the data, and are not intentional or unintentional errors. We decided to omit

them from our working data for the main part of our experiments and later explore their

impact in Section 5.3.

The remaining 3,615 entries were randomly divided into three parts: a training, validation,

and testing set (in the same fashion as in Section 4.1.2). See Table 4.6 for the resulting

split sizes. We also include in Table 4.4 the dimension-specific statistics of the final

processed ELLIPSE dataset (after removing the outliers).
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Table 4.6: Train, validation and test data split sizes (in number data entries) after pars-
ing the ELLIPSE dataset and removing all outliers as described in Sections 4.2.2 and 4.2.4.

Split Train Validation Test

ELLIPSE (no outliers) 2,530 543 542

4.2.5 Implementation

Using the essay scoring baseline we established in Section 4.1.4, we begin to build our

multi-dimensional baseline. We do so by first training our roberta-base regression model

on each of the individual essay quality dimensions of ELLIPSE, instead of the CLC FCE

holistic scores. That is, for each dimension, say Cohesion, we simply adapt the previous

model to predicting Cohesion scores given an input essay. We use the same tokenisation

methods and the same Trainer settings. Note that by default, RoBERTa (Liu et al.,

2019) uses the standard MSE loss function for training in regression.16 See Figure 4.6 for

the resulting architecture,10 where 768 is the default hidden embedding dimension size e

for the pre-trained RoBERTa model. Thus, our multi-dimensional baseline is in fact six

different regression models, which were trained in much the same way as before.

Figure 4.5: Our multi-dimensional baseline architecture and data flow. Here, b denotes the
batch-size and s stands for the sequence length to which inputs are padded or truncated.

16 See relevant documentation: https://huggingface.co/transformers/v2.9.1/model doc/roberta.html.
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Once trained, each model was individually fine-tuned on the validation set as before,

using the same hyper-parameter value ranges. We ultimately picked the best settings for

each dimension according to our evaluation metrics (Table 4.7). For consistency with the

previous experiment, we will continue to use the Spearman and Pearson rank correlation

coefficients, and the RMSE metric for evaluation. See Table 4.8 for the fine-tuned models’

results on the ELLIPSE test set.

Table 4.7: Final hyper-parameter values for each of the RoBERTa regression models on
the different dimensions of the ELLIPSE dataset.

Dimension Epochs LR Batch size Sequence length

Cohesion 3 5.0e-5 18 512
Vocabulary 3 6.0e-5 16 512
Phraseology 3 5.0e-5 16 375
Syntax 3 2.6e-5 16 300
Grammar 4 3.0e-5 18 280
Conventions 3 5.0e-5 20 502

Table 4.8: Performance metrics for the fine-tuned models of the multi-dimensional
baseline on the ELLIPSE test set (rounded to 3 significant figures).

Dimension RMSE Pearson Spearman

Cohesion 0.562 0.584 0.575
Vocabulary 0.467 0.599 0.605
Phraseology 0.549 0.612 0.608
Syntax 0.518 0.637 0.639
Grammar 0.490 0.676 0.676
Conventions 0.499 0.688 0.681

Notice that the best results are achieved for Conventions and Grammar. Looking at the

ELLIPSE scoring rubric (Appendix B), we can equate Conventions to the Mechanics and

Grammar to the Grammaticality dimensions of essay composition as established by Ke

and Ng (2019) in Table 3.1, which are amongst the simplest to capture. In comparison,

the Cohesion model struggles the most, and indeed, this dimension is notoriously complex

(Morris and Hirst, 1991; Burstein et al., 2010; Yannakoudakis and Briscoe, 2012; Ke and

Ng, 2019). We also observe that Vocabulary is awarded the smallest RMSE score, and in

fact, this will be true throughout our experiments. This is likely due to the distribution

of the dimension which has a much lower spread (σ = 0.463), with a shorter max/min

value range than that of the other dimensions after removing the outliers values (Section

4.2.4). While RMSE is a good evaluation metric, it can only be used to compare different

models or model configurations for the same variable and not between variables (as here)

since it is scale-dependent (Christie and Neill, 2022, Section 8.09.2.3.2).

The six fine-tuned RoBERTa regression models form our multi-dimensional baseline. We

can now move to the core part of the study: building an MTL system on the very same
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dataset, in the hope of improving on this baseline. This is a rather strong baseline since all

models were individually fine-tuned. Using the same overall best set of hyper-parameters

across dimensions could have yielded an acceptable, although weaker baseline. However,

in this study, we will use the results in Table 4.8 to evaluate the model we build next.

4.3 Multi-Task Learning Approach

Here, we describe how we built our MTL model for six-dimensional essay scoring. We use

the standard hard-parameter sharing approach as presented in Figure 3.1 with one single

shared encoder, and six task specific heads (one for each of the ELLIPSE dimensions).

We set the first part of our MTL model to be a roberta-base pre-trained encoder. This

ensures the relevance of any performance comparisons we will make between our model

and the multi-dimensional baseline we established in Section 4.2. The encoder’s output

is then passed to six identical task heads. Each task head is formed of a dropout layer for

regularisation, with a dropout rate of 0.1 (Section 2.3), and a linear map of size (e × 1)

which outputs the final real-valued dimension score (where recall that e is the hidden

embedding dimension of RoBERTa which is equal to 768). Although the heads share the

same architecture, they will be trained individually, and learn their own set of weights

and parameters. See Figure 4.6 for the resulting architecture.10

Figure 4.6: Our default multi-task learning model architecture and data flow. Here, b
denotes the batch-size, s stands for the sequence length to which inputs are padded or
truncated, and p is the dropout rate of the dropout layer.
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Notice the type of the encoder outputs which are passed to the task-specific heads. It

turns out that the pre-trained RoBERTa encoder returns two types of outputs given

the tokenised inputs: sequence and pooled outputs. The first is simply an array

representation of the last hidden encoder layer for each token in each sequence of the

batch which will be of size (b× s× e), whereas pooled outputs pass through an additional

linear layer and a hyperbolic tangent (tanh) activation function6 and have a (b× e) shape

instead. It is generally recommended to use pooled outputs when we do not need the

representations for the individual tokens because they contain contextualised information

of the whole input sequence.

Now that we have our model, let us train it. We tokenise the training set essays and train

our model in much the same way as in Section 4.2.5. However, because an MTL model

juggles multiple tasks simultaneously, the training loss function is computed as the average

of the different task head losses.17 As previously, we use the standard MSE function as

the individual task head cost functions. In our implementation, we first compute the

mean of the losses for a single batch in a single task, and then after repeating the process

for all six tasks, take the mean to obtain the overall loss for the batch across the six

dimensions. This is the loss we wish to minimise after each batch and this is the step at

which the model parameters get updated. This process is repeated again for each batch

in the training set and for all training iterations (epochs).

Once our model was trained, we looked at different hyper-parameter settings in the hope

of obtaining some improvements on our baseline in some, if not all, of the dimensions.

We varied the learning rate, the number of epochs, the sequence length and the batch

size, using the same value ranges as in Section 4.1.4. We identified four different settings

of interest which we will detail in the next chapter. These are: (1) Syntax, (2) Gram-

mar, (3) Phraseology, and lastly, (4) Conventions, Vocabulary and Cohesion. The hyper-

parameter values which correspond to each one of these can be found in Table 4.9.

Table 4.9: Different hyper-parameter values for each setting identified during the
fine-tuning of our MTL model.

Setting Epochs LR Batch size Sequence length

1 3 2.6e-5 16 500
2 3 2.6e-5 16 502
3 3 2.0e-5 16 500
4 4 2.7e-5 16 500

In this chapter, we described our experimental methods: from building a reliable and

reproducible baseline to a MTL model. Next, we present and evaluate the results of the

latter against the multi-dimensional baseline we established in Section 4.2.

17 We use an unweighted average here, that is, all six dimensions are considered equally important in
the loss.
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Chapter 5

Evaluation

This chapter is dedicated to the evaluation of our multi-task learning (MTL) approach.

We start by presenting and evaluating the results of our newly built MTL model on the

ELLIPSE test set. Then, through some further experiments, we begin to explore and

contextualise the benefits and shortcomings of our approach. Finally, we include the lim-

itations of our experiments.

5.1 Multi-Dimensional Results

Multi-task learning is inherently a multi-objective problem (Sener and Koltun, 2019). As

such, it will be difficult for us to choose one over-arching best model, as we expect to have

to deal with some conflicts and trade-offs between the different dimensions. For example,

during the fine-tuning of our MTL model, but also of our prior multi-dimensional baseline

(Section 4.2), some dimensions seem to prefer long input sequences, others favour lower

learning rates, etc. It is hard to satisfy the demands of each task. Here, we present the

results of four different hyper-parameter settings (Table 4.9) which cover the best scores

achieved by our MTL system across all six ELLIPSE dimensions.

As part of our evaluation, we continue to use the Pearson and Spearman’s rank correlation

coefficients. As mentioned in Section 3.4, these are two standard metrics in Automated

Assessment (AA) as seen in, for example, Briscoe et al. (2011) and Yannakoudakis et al.

(2011). We will also include the Root Mean Squared Error (RMSE) metric for reference,

but will not make our evaluations based on this metric. This is mainly because it is scale-

dependent (Christie and Neill, 2022, Section 8.09.2.3.2) and we are comparing dimensions

which do not necessarily follow the exact same distributions (notably Vocabulary) as

mentioned in Section 4.2.5. We are now ready to evaluate the results of our MTL system

against the baseline we established in Section 4.2.
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Table 5.1: Performance metrics for the MTL multi-dimensional scoring model on the
ELLIPSE test set (rounded to 3 significant figures) using the hyper-parameter values
of Setting 1 (Table 4.9). The dimensions are ranked from lowest to highest based on
their average correlation scores. The lower part of the table recalls our baseline (Table
4.8) on the dimensions which are most relevant to our analysis. In green we denote
the MTL results which beat the baseline, and in red the results of our MTL which are
still outperformed by the baseline on the considered dimensions. We also include the
differences between the MTL results, and the corresponding baseline scores.

Model Dimension RMSE Pearson Spearman

MTL Cohesion 0.539 0.534 0.531
Vocabulary 0.423 0.559 0.570
Phraseology 0.491 −0.058 0.616 +0.004 0.619 +0.011

Syntax 0.457 −0.061 0.639 +0.002 0.646 +0.007

Conventions 0.495 0.671 0.665
Grammar 0.486 0.669 0.673

Baseline Phraseology 0.549 0.612 0.608
Syntax 0.518 0.637 0.639

5.1.1 Setting 1: Syntax

Table 5.1 shows the results for the first setting. We notice that two of the baseline models

are beaten, namely Phraseology and Syntax, although by very little. These happen to

be our best recorded results for the Syntax dimension, in all of our runs on of the MTL

model. On the other hand, these are not the best recorded results for Phraseology (which

we will see in Setting 3).

5.1.2 Setting 2: Grammar

Table 5.2: Results on the test set for Setting 2.
Model Dimension RMSE Pearson Spearman

MTL Cohesion 0.538 0.531 0.527
Vocabulary 0.421 0.558 0.570
Phraseology 0.496 −0.053 0.615 +0.003 0.616 +0.008

Syntax 0.465 0.622 0.627
Conventions 0.498 0.661 0.658
Grammar 0.490 +0.000 0.670 −0.006 0.677 +0.001

Baseline Phraseology 0.549 0.612 0.608
Grammar 0.490 0.676 0.676

Table 5.2 presents the results for the second hyper-parameter setting, which actually

include the best recorded Grammar scores for our MTL model. We see that our model

surpasses the baseline on the Spearman metric for this dimension, but it does not, however,

beat it for the Pearson correlation, and overall, the average correlation scores for Grammar

fall under the baseline’s: with 0.734 (rounded to 3 significant figures) against 0.760. As

an aside, we notice again that the Phraseology baseline is outperformed.
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5.1.3 Setting 3: Phraseology

Table 5.3: Results on the test set for Setting 3.
Model Dimension RMSE Pearson Spearman

MTL Cohesion 0.545 0.530 0.531
Vocabulary 0.432 0.555 0.572
Syntax 0.480 0.623 0.630
Phraseology 0.502 −0.047 0.625 +0.013 0.633 +0.025

Conventions 0.529 0.630 0.628
Grammar 0.530 0.655 0.666

Baseline Phraseology 0.549 0.612 0.608

We arrive to the third setting in which Phraseology achieves its very best results (see

Table 5.3). We note an improvement across all three performance metrics respectively.

However, looking at the other dimensions, they generally score worse than our baseline.

5.1.4 Setting 4: Conventions, Vocabulary and Cohesion

Table 5.4: Results on the test set for Setting 4.
Model Dimension RMSE Pearson Spearman

MTL Cohesion 0.505 −0.057 0.551 −0.033 0.542 −0.033

Vocabulary 0.377 −0.090 0.568 −0.031 0.576 −0.029

Syntax 0.442 0.633 0.634
Phraseology 0.478 0.609 0.606
Grammar 0.465 0.668 0.671
Conventions 0.434 −0.065 0.692 +0.004 0.686 +0.005

Baseline Cohesion 0.562 0.584 0.575
Vocabulary 0.467 0.599 0.605
Conventions 0.499 0.688 0.681

Finally, let us look at the results for the fourth setting in Table 5.4. This includes the

best achieved results for the Conventions dimension for which we note an improvement

of 0.033 over the baseline for both correlation metrics. This setting also includes the best

recorded scores for Cohesion and Vocabulary, but they are far surpassed by the baseline

in both correlation metrics. Interestingly however, they considerably exceed the baseline

for the RMSE score, by 0.057 and 0.09 respectively.

Through the four hyper-parameter settings, we have presented the best results of the

MTL model we designed to score all six ELLIPSE dimensions simultaneously. Let us now

summarise our findings.

(1) First, our model is capable of surpassing our multi-dimensional baseline completely

on three dimensions (Phraseology, Syntax and Conventions), and partially for all.
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(2) In particular, our model beats the Phraseology baseline in three out of the four

hyper-parameter settings presented. If we recall our data inspection of the dataset

in Section 4.2.3, we found that the strongest correlation relationships were between

the Phraseology dimension and Vocabulary, Grammar, and Syntax respectively. We

suggested that this was due to the nature of Phraseology, a dimension which touches

on the lower levels and mechanics of writing which plays an important part in these

three dimensions specifically. The high level of relatedness of Phraseology to half of

the other tasks may explain why it does so well in a MTL setting. We will reflect

on this further in the next section.

(3) Finally, Vocabulary and Cohesion, which were the lowest scoring dimensions in

our baseline, and are notoriously trickier than the others (Section 3.2.1), do not

outperform the baseline in both correlation metrics, and seem to, instead, be doing

much worse in a MTL setting. Could this be caused by one (or more) of the other

dimensions?

To conclude, (1) shows definite promise for the multi-task learning approach to AA. After

all, we have managed to improve on our established baseline. Unfortunately, these specific

dimensions were not the most complex from the start, and we are particularly interested

in improving on those that are (e.g., Cohesion). It is with this ambition in mind that we

begin to explore the ideas raised in (2) and (3).

5.2 Isolating Dimensions

In the previous experiment, we have sought to create an MTL system which could predict

the essay scores for all six ELLIPSE dimensions simultaneously. This approach assumes

that all tasks are closely related to each other (Ruder, 2017), and indeed, taken as a

whole, the six essay quality dimensions are quite similar as we saw in Section 4.2.3. This

is because they all look at slightly different aspects of language in the same type of text

(essays). However, taken individually, a dimension might not be as closely related to all

of the other available dimensions. Take for example Cohesion and Grammar. The first

refers to the overall organisation and argument structure of the essay; the second focuses

on localised compliance with the rules of grammar (Appendix B). In such cases, sharing

information between tasks might actually hurt performance, instead of improving it. This

phenomenon is known as a negative transfer (Ruder, 2017).

In this section, we investigate the effects of different dimensions on one another. We will be

working with smaller MTL models: instead of scoring all six dimensions simultaneously,

we will focus on a subset of these using our intuition of their relatedness, the relationships

we observed in Section 4.2.3, and the results of the previous section. We do not intend to

be exhaustive here,1 only to build on our previous results.

1 In fact that would mean experimenting with 57 different models for each possible combinations of
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5.2.1 Phraseology, Grammar and Syntax

Phraseology is a dimension concerned with the diversity of constructions and phrases

in an essay (Appendix B), which we found to correlate highly with dimensions of Syn-

tax and Grammar in Section 4.2.3. This was further corroborated by our results (2) in

the previous section. To better understand the relationships between these dimensions,

and the seemingly central role that Phraseology plays in those, we propose to compare

the performance of four different MTL models, given the same hyper-parameter setting.

Playing around with these three dimensions, we first isolate Grammar and Syntax indi-

vidually, then each respectively with Phraseology, and finally all together. We set the

hyper-parameter values to what we experimentally found to be a good consensus between

the fine-tuned Grammar-Phraseology and Syntax-Phraseology MTL models to avoid using

a random hyper-parameter setting. See Table 5.5.

Table 5.5: Hyper-parameter setting for our experiments in Section 5.2.1.
Epochs LR Batch size Sequence length

4 2.0e-5 14 500

Table 5.6: Results of our small MTL models on the ELLIPSE test set (rounded to 3
significant figures) using the hyper-parameter setting in Table 5.5. In red we highlight
the results which are below our previous MTL results for all four settings (Section 5.1,
and in green those that are above.

Model Dimension RMSE Pearson Spearman

Grammar-Syntax Grammar 0.554 0.575 0.566
Syntax 0.465 0.655 0.654

Grammar-Phraseology Grammar 0.554 0.575 0.566
Phraseology 0.465 0.655 0.654

Syntax-Phraseology Syntax 0.527 0.621 0.614
Phraseology 0.474 0.659 0.652

All three dimensions Grammar 0.546 0.573 0.563
Syntax 0.484 0.642 0.645
Phraseology 0.424 0.585 0.599

See Table 5.6 for the results. We see that the results for Syntax increase quite significantly

when paired with the Grammar dimension, outperforming both our multi-dimensional

baseline and MTL results. This remains true in the three-dimensional model, with the

Phraseology dimension added. However, as is revealed by the Syntax-Phraseology results,

Phraseology seems to negatively impact Syntax and in fact the results for the three-

dimensional MTL model are less good than those of the Grammar-Syntax MTL model.

We also note that Phraseology benefits greatly from both Syntax and Grammar, but only

when individually paired with them, beating again our previous baseline and the MTL

tasks: 26 = 64 is the total number of subsets in a set of six elements, from which we take the empty
subset and the six singletons.
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results. On the other hand, the three-dimensional setting yields worse Phraseology scores

than any of our previously recorded results. Finally, it is interesting to find that Grammar

helps improve the results of the other two dimensions, but never benefits from them.

We suppose that this can be explained by the nature of these three dimensions. Gram-

mar is a fundamental aspect of language, and the features learned by our model for this

dimension are likely useful for a wide range of tasks, including Phraseology and Syntax.

This is not necessarily true of all the dimensions. Indeed, Phraseology and Syntax are

respectively much more specific and narrow, focusing only on the diversity of phrases, and

their arrangements (Appendix B). Perhaps it is precisely those dimension-specific features

that are distracting from and negatively affecting Grammar. Supplemental studies are

needed to determine whether these explanations are accurate and sufficient.

From these results, it becomes apparent that the relationships and interactions between

different dimensions are quite complex and hard to anticipate. We also begin to see beyond

the six-dimensional MTL approach where experimenting with different architectures could

lead to even better results.

5.2.2 Vocabulary and Cohesion

Vocabulary and Cohesion are, apparently at least, quite different dimensions. Looking at

the annotation guidelines (Appendix B), Vocabulary is strictly concerned with the proper

use and diversity of words; Cohesion, on the other hand, is more complex and looks at

the overall organisation of the ideas in the essay. In spite of their clear difference, they

seem to react similarly to the MTL setting (Section 5.1.4). Further, looking at the hyper-

parameter values for each of the fine-tuned multi-dimensional baseline models (Table

4.7), Vocabulary and Cohesion are quite similar: favouring long input sequences and low

learning rates. It could be that they are negatively affected by the same dimensions, or

it could be that, despite their obvious differences, they rely on similar features.

We test this by isolating the two dimensions in a single MTL model, and running the

same experiment as previously. As such, we trained the model in the exact same way

as in Section 4.2.5, then evaluated and hyper-parameter tuned it on the same validation

set, and ultimately tested it on the same test set. The challenge of picking the best

hyper-parameter setting when juggling two dimensions remains. We decided to pick the

setting which yielded the best overall average correlation scores (along both Pearson and

Spearman coefficients, and both dimensions). See Table 5.7 for the obtained best hyper-

parameter setting, and Table 5.8 the corresponding results.

Table 5.7: Best hyper-parameter setting for our small Vocabulary-Cohesion MTL model.
Epochs LR Batch size Sequence length

5 2.6e-5 16 500
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Table 5.8: Results of our small Vocabulary-Cohesion MTL model on the ELLIPSE test
set (rounded to 3 significant figures) using the hyper-parameter setting in Table 5.7. The
lower part of the table recalls the results of the multi-dimensional baseline (Table 4.8).
We use the same colouring system as in the tables of Section 5.1.

Model Dimension RMSE Pearson Spearman

Vocabulary-Cohesion MTL Cohesion 0.521 −0.041 0.585 +0.001 0.572 −0.003

Vocabulary 0.439 −0.031 0.651 +0.052 0.648 +0.043

Baseline Cohesion 0.562 0.584 0.575
Vocabulary 0.467 0.599 0.605

We see that new results for the Vocabulary dimension improve considerably on the base-

line for all metrics, and by extension, on the previously obtained MTL model correlation

scores (Table 5.4), but not the RMSE score, which achieved an all-time low in Setting 4.

On the other hand, our new Cohesion results outperform the baseline on the RMSE met-

ric, but barely edge it out on the Pearson metric, and are just surpassed in the Spearman

rank. When compared to our previous MTL results (Section 5.1) however, we see a great

improvement of 0.034 and 0.030 for the Pearson and Spearman correlation coefficients

respectively, but again, not for the RMSE score. In fact, it is interesting to see how low

the RMSE scores were for both dimensions in Setting 4 as opposed to here. We hypoth-

esise that this could this be due to the generalisation benefits of MTL which comes with

a greater diversity of tasks.

However, though our different MTL models outperform the baseline on all the dimensions,

it does not do so simultaneously (for the same hyper-parameter setting). In our exper-

iments, we have highlighted the importance of pairing the right tasks together. There

are many more avenues and combinations we could have explored, but we have success-

fully managed to showcase some of the benefits and limitations of the MTL approach for

automated essay scoring, which was after all, the intention of this study.

In the next section, we return to our decision to remove outliers from our working dataset

made in Section 4.2.4.

5.3 Studying Outliers

Recall that in Section 4.2.4, we excluded 296 entries from the ELLIPSE dataset because

they fell outside of the computed interquartile range (Table 4.5). We ask the following

question: was removing these outliers truly beneficial to the performance of our models,

and if so, at what cost? In this section, we come back on this decision and explore the

impact of these outliers on the training and evaluation of our multi-dimensional baseline

and MTL model.
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First, we reflect on the reason why only the Vocabulary dimension contains outlier values

according the IQR method. We hypothesise that it is due to the marking criteria for

this specific dimension (Appendix B) with respect to the lengths of the written essays

(probably due to time constraints and enforced word limits). Indeed, unlike the other

dimensions, displaying extensive vocabulary range in approximately 400 words is quite

challenging. Equally, it is unlikely that students will be awarded low scores (1–2) if the

student writes what is deemed enough.

Inspecting the removed entries, we find that these were on average much shorter for the

low-scoring ones (332 words and 2,335 characters long), and much longer for the high-

scoring ones (548 words and 3,065 characters long), as opposed to the majority of essays.

This is especially true for Vocabulary here, but more generally, there is a strong positive

correlation between the different dimension scores and the essay lengths, a feature which

has often been used in Automated Assessment (Ke and Ng, 2019, Section 3.3). From this

discussion only, it is unclear whether it is legitimate to exclude these outlier values.

Let us then measure the impact of removing these outliers on the performance of our

models in an experiment. We will first randomly divide the previously ignored outliers into

train, validation and test sets of their own using the same split methods and proportions

as previously (Sections 4.1.2 & 4.2.4). See Table 5.9 for the obtained split sizes. Then, we

perform the following experiments: (1) we begin to evaluate both the multi-dimensional

baseline and MTL model on the outlier test set, and finally, (2) re-train both models on a

concatenation of the previous training set and the outlier training set, and evaluate them

on the original test set, and the newly created outlier test set. Reporting performance

in both settings will say something about the models’ generalisation capabilities, having

been trained with or without the outliers.

Table 5.9: Train, validation and test data split sizes (in number data entries) of the set
of outliers identified in 4.2.4, and of the concatenation of the previous ELLIPSE dataset
split in Table 4.6 and the outliers’ split.

Split Train Validation Test

Outliers 207 45 44
ELLIPSE (with outliers) 2,737 588 586

Tables 5.10 and 5.11 present the results for our multi-dimensional baseline on the original

ELLIPSE test set and the newly split outliers test set respectively, using the default

baseline hyper-parameters in Table 4.7. Similarly, Tables 5.12 and 5.13 show the same

results for our multi-task learning model using the hyper-parameter Setting 4 (Table 4.9).

Perhaps most strikingly, both correlation metrics are consistently much higher on the

outlier test set across both experiment settings and both models than anything we have

previously achieved on the original test set, ranging from 0.788 to 0.955 for the baseline

47



Table 5.10: Multi-dimensional baseline results on the original ELLIPSE test set (rounded
to 3 significant figures) using the default baseline hyper-parameter settings (Table 4.7)
according to the two described experiment settings: (1) trained on the original training
set (without outliers), and (2) trained on the both the original and the outlier training
set. Here (1) recalls the multi-dimensional baseline in Table 4.8. We highlight in green
the best achieved scores between both experiment settings, for each dimension and each
metric.

(1) (2)

Dimension RMSE Pearson Spearman RMSE Pearson Spearman

Cohesion 0.562 0.584 0.575 0.537 0.577 0.562
Vocabulary 0.467 0.599 0.605 0.631 0.595 0.600
Phraseology 0.549 0.612 0.608 0.514 0.622 0.617
Syntax 0.518 0.637 0.639 0.464 0.631 0.632
Conventions 0.499 0.688 0.681 0.529 0.676 0.670
Grammar 0.490 0.676 0.676 0.500 0.657 0.665

Table 5.11: Multi-dimensional baseline results on the outliers test set (rounded to 3
significant figures) using the default baseline hyper-parameters settings according to the
two described experiment settings.

(1) (2)

Dimension RMSE Pearson Spearman RMSE Pearson Spearman

Cohesion 0.596 0.898 0.841 0.651 0.902 0.885
Vocabulary 0.850 0.955 0.835 0.796 0.917 0.820
Phraseology 0.847 0.902 0.809 0.663 0.892 0.804
Syntax 0.595 0.930 0.849 0.572 0.928 0.847
Conventions 0.557 0.935 0.910 0.450 0.933 0.890
Grammar 0.591 0.888 0.788 0.517 0.883 0.816

Table 5.12: Multi-task learning model results on the original test set (rounded to 3
significant figures) using the Setting 4 hyper-parameter values (Table 4.9) according to
the two described experiment settings. Here (1) recalls the MTL model results in Table
5.4.

(1) (2)

Dimension RMSE Pearson Spearman RMSE Pearson Spearman

Cohesion 0.505 0.551 0.542 0.554 0.533 0.522
Vocabulary 0.377 0.568 0.576 0.491 0.628 0.625
Phraseology 0.478 0.609 0.606 0.502 0.628 0.622
Syntax 0.442 0.633 0.634 0.434 0.571 0.579
Conventions 0.434 0.692 0.686 0.520 0.646 0.631
Grammar 0.465 0.668 0.671 0.529 0.661 0.662

and from 0.778 to 0.952 for the MTL model. Inspecting the outlier test set, we computed

the average standard deviation between the scores of a single entry across all dimensions,
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Table 5.13: Multi-task learning model results on the outliers test set (rounded to 3
significant figures) using the Setting 4 hyper-parameter values according to the two
described experiment settings.

(1) (2)

Dimension RMSE Pearson Spearman RMSE Pearson Spearman

Cohesion 0.632 0.922 0.893 0.497 0.917 0.876
Vocabulary 0.685 0.941 0.894 0.521 0.936 0.868
Phraseology 0.735 0.916 0.817 0.623 0.897 0.809
Syntax 0.938 0.952 0.841 0.723 0.924 0.820
Conventions 0.568 0.935 0.901 0.470 0.929 0.856
Grammar 0.599 0.899 0.778 0.506 0.889 0.797

and did the same for the original test set, and found 0.32 and 0.36 (2 d.p.) respectively.

Hence, the increase in performance could be related to the marks in the outlier test set

being more closely distributed than in the original one. This suggests that our models

generalise well to this unseen part of the data. However, we need to take into account

the very small size of the outlier test set (44 entries) in comparison to the original test

set (542 entries).

Now, if we compare the two experimental settings, the models trained on the original

training set (without outliers) generally perform better than those trained on the full

dataset (with outliers), and this is true on both the original test set, but more surprisingly

on the outlier test set also. Indeed, we would have expected the models trained on the

entire dataset to outperform our original models on the outlier test set but this is not

overwhelmingly the case. In fact, looking at the results, the original models perform much

better on both correlation metrics on the outlier test set. On the other hand, the outlier

test set RMSE scores are better for the re-trained models of the experiment setting (2).

Finally, the models in (1) perform significantly better than those in (2) on the original test

set in most dimensions, except for the Phraseology, as well as the Vocabulary dimension

for the MTL model, and most metrics, except the RMSE scores for Syntax and Cohesion.

But overall, it seems that, although we were unsure whether it was legitimate to exclude

the outliers, removing them did not impede on our models’ generalisation capabilities,

and on the contrary, they seem to have benefited from it.

These results comfort us in our decision to remove the outliers made in Section 4.2.4,

and in the reliability of the ensuing results (Sections 5.1 & 5.2), with the caveat that we

did not here fine-tuned the models trained on the entire dataset in setting (2). Instead,

we used the default, and best, hyper-parameter values of our baseline, and one of the

best hyper-parameter settings of our MTL model, which had been found on the originally

split ELLIPSE dataset (without outliers). This was important for comparability, but we

might have not shown the re-trained models in their best light, and include this in our

limitations (Section 5.4).
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5.4 Discussion and Limitations

The finding most clearly supported by our study is the following: an MTL approach

can help improve automated essay scoring in the multi-dimensional setting, and does

so on a range of essay quality dimensions. Indeed, through our main experiment in

Section 4.3, and further studies in Section 5.2, we have managed to improve on our multi-

dimensional baseline on each of the six essay quality dimensions of ELLIPSE (namely

Cohesion, Syntax, Vocabulary, Phraseology, Grammar, and Conventions), some of which

are considered highly complex.

These results highlight the theoretical merits of MTL which, to the best of our knowledge,

had not previously been explored in the multi-dimensional essay scoring setting of AA.

At the same time, our understanding of the different essay quality dimensions, how they

relate to each other, how they are similar, how they are different, is still very much limited.

We will need to study them more thoroughly if we want to improve multi-dimensional

essay scoring, not just in the context of MTL. Further, while we have managed to improve

on all six dimensions, we have not managed to do so equally well in all of them. To fully

grasp the potential of MTL, we will need properly explore how each dimension benefits

from it. Given more time, we would have liked to do an in-depth qualitative analysis of

our MTL models to further this agenda. Instead, we leave it for future work.

Finally, several limitations to the study can be identified.

• Since the data that is generally used as the basis for training and optimising compu-

tational models is produced by humans, using human data in evaluation is widely

accepted within NLP (Kovář et al., 2016). This remains true to this day, but

we note that human gold standards do present some inherent reliability problems

(Williamson et al., 2012b), and have recently been put into question2 (Basile, 2021).

We must also recognise the need to evaluate AA systems using other methods, such

as computing correlation scores with extrinsic metrics (e.g., state assessment scores,

course grades, etc.) (Hamner and Shermis, 2012; Williamson et al., 2012a).

• Since the ELLIPSE dataset does not provide the original exam questions, we cannot

do prompt-specific evaluation, which is generally standard in AA (Ke and Ng, 2019).

Further, the dataset contains scripts from many different exams and sittings; the

fact that we have no way to check the consistency of marking is a limitation. Indeed,

it may be that the dataset marking is highly heterogeneous which is impacting its

quality and the performance of our resulting models.

• Whether removing outliers was a good decision is still unclear despite our exper-

iments in Section 5.3. We have shown that the generalisation capabilities of our

models did not seem affected, but did note that fine-tuning the re-trained models

could have provided further insights into the question.

2 This discussion, however, lies well outside of this study.
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Care and caution should be taken in the reading and generalisation of our results.

This chapter has presented the main findings of this study. After a series of experiments

and evaluations, we have successfully showcased the benefits of the MTL approach for

multi-dimensional scoring as we had set out to do. We now come to the end of our study.
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Chapter 6

Conclusion

In this final chapter, we summarise the work that was presented in this report, and present

some practical directions for future research in the area.

6.1 Summary

This is the first piece of work to investigate a multi-task learning (MTL) approach to

multi-dimensional essay scoring within Automated Assessment (AA), and the results are

promising. Indeed, we have found that MTL can help improve the overall performance

of AA systems, but more importantly, that it can better the essay score predictions for a

variety of essay quality dimensions, including some of the most complex (e.g., cohesion).

The implications of this are considerable when we look at the existing commercial uses of

automated essay scoring systems which mainly focus on holistic scoring. If we can better

our multi-dimensional essay scoring systems, on all dimensions, even the complex ones,

we can hope to provide a richer mark breakdown to students and teachers, which is much

more suited to the classroom setting.

However, we must look beyond this. Ke and Ng (2019) argues that multi-dimensional

scoring is not enough. Indeed, students who receive a low mark in a particular dimen-

sion may not know why they receive this mark, which is normally the role of feedback.

Recent work by Ke et al. (2018) attempts to solve this problem by identifying the argu-

ment features which impact the persuasiveness dimension score, but overall, the area of

feedback deserves more attention, and we hope that this study paves the way towards

automatic generation of multi-dimensional feedback, beyond simple scores, in the future.

Developing the area of feedback has highly commercially valuable applications for schools

and the private sector (Ke and Ng, 2019), but more importantly, we believe that it has

the potential for revolutionising the way in which people learn to write argumentative

essays. In making automatic, personalised, multi-dimensional feedback available to stu-

dents from all backgrounds, AA may play an increasingly important role in leveling the
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existing inequities in writing instruction (Deane, 2022).

6.2 Future Work

Given more time, we would have liked to investigate the following avenues, which draw

directly on some of the ideas that have been raised in this study:

(1) It is a well-known fact that essay length is a strong predictor of essay grades (Ke

and Ng, 2019, Section 3.3), but did not properly investigate this idea. We would be

interested in analysing the performance of our baseline and MTL models, segmenting

the ELLIPSE dataset of in terms of essay length ranges, and comparing the results

with length-specific systems, that is, the same models but trained and fine-tuned

on subsets of the dataset (according to length ranges).

(2) Through our experiences, we felt that the MTL approach was faster and more effi-

cient than the six models of the multi-dimensional baseline. This is simply because,

in the MTL approach, we only had one model to train, evaluate, and test instead of

six. Finding a way to rigorously define and measure this intuition by, for example,

timing our multi-dimensional baseline versus our MTL model across all six dimen-

sions given the same experimental settings, is an interesting avenue and the findings

could further support the use of MTL in AA applications.

Further, recall that in this study, our aim was not to build the “best” multi-dimensional

essay scoring system, but rather reveal the merits of the multi-task learning approach for

this application. As such, there is definitely grounds to improve all the models presented

here and in the hope of reaching state-of-the-art performances: by spending more time

and resources in fine-tuning, but also by experimenting with a broader range of architec-

tures. In line with this, Section 5.2 only begins to scratch the surface of the architectural

possibilities of MTL, and exploring them is definitely worthy of interest.

Beyond this, a large amount of past AA effort focused on the development of features,

and Ke and Ng (2019, Section 3.3) suggest that these will continue to play an important

role in essay scoring systems in the future. In this study, we cast aside hand-crafted

features to focus on strictly neural approaches. However, augmenting our neural models

with previously identified AA features1 to build a hybrid MTL system could produce even

better results for the multi-dimensional setting.

Looking further, we identify the following possible horizons in this line of work (in no

specific order of importance):

(1) Leveraging Explainable AI (XAI) techniques2 which have been proved to work in

1 Refer to Ke and Ng (2019, Section 3.3) for a survey of the features that have been used in AA.
2 See Danilevsky et al. (2020) for a full survey of these techniques in NLP.
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NLP, for example, LIME (Ribeiro et al., 2016), to better understand the features

that a multi-task learning neural model uses to make scoring decisions, and produce

explanations of its outputs, could lead to important discoveries. Additionally, it

could support richer automatic feedback generation, across dimensions, which is

what the field is moving towards. More generally, we hope to see more research into

interpretable (Du et al., 2019) AA systems in the future.

(2) Understanding what a multi-dimensional feedback-providing application should look

like and do is something that is lacking in the area of AA. There is a gap for Human-

Computer Interaction (HCI) practices in this field: we would like to see user studies

published, and prototypes of self-assessment and self-tutoring interfaces built, to

support the future of automatic feedback generation applications. This gap has also

been noted by Ke and Ng (2019, Section 9).

(3) The ELLIPSE dataset does not give access to this original exam prompts meaning

that we cannot do prompt-specific evaluation. However, prompt-specific in-domain

evaluation is traditional to Automated Assessment (Ke and Ng, 2019), and could

reveal further insight into multi-dimensional scoring systems. Either making the

original prompts available or developing a multi-dimensional dataset which includes

the original prompts is a definite avenue for future work, although datasets take

time. Although, collect prompt-specific data can be very costly during in dataset

construction (Attali and Burstein, 2006; Yupei and Renfen, 2021).

(4) There exist many different ways of segmenting language acquisition, and we ask

why these six dimension in particular? There is definitely room to explore and

further segment the dimensions to provide better feedback to students, but it would

be interesting to see how further granularising the essay quality dimension we are

evaluating affects performance, and in particular, how it affects the MTL setting.

(5) Finally, there are many ethical considerations surrounding the topic of automated

essay scoring, beyond linguistic diversity, such as fairness and bias (Madnani et al.,

2017; Madnani and Cahill, 2018), that we would like to see investigated further.
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Appendix A

Correlation Metrics

Throughout the study, we encountered the concept of correlation metrics that we did not

formally define at the time. This chapter is designed to fill that gap.

A.1 Correlation

The word correlation is used in everyday life to denote some form of association. It is

at the same time one of the most widely used and frequently misused statistic (Carroll,

1961; Chen and Popovich, 2011). Jupp (2006) defines it as:

Definition A.1.1 (Correlation). A linear relationship between two numerical

variables, usually denoted as x and y. The value of the correlation coefficient

lies between +1 and −1. A positive coefficient indicates that a high value

of x tends to be associated with a high value of y and a negative coefficient

indicates that as the value of x increases the value of y is likely to decrease.

A coefficient of 0 means that there is no relationship between the two variables.

Following previous Automated Assessment literature (Briscoe et al., 2011; Yannakoudakis

et al., 2011), we will only use the Pearson and Spearman’s rank coefficients, but there

exists many other ways of measuring correlation (e.g., Kendall’s Tau; Kendall, 1938).

A.2 Pearson Correlation

The Pearson correlation is a well-known metric, especially in the context of evaluating

systems with continuous outputs. It was introduced by Francis Galton (Galton, 1877,

1889) and later developed by Karl Pearson (Pearson, 1896), and measures the linear

relationship between two random variables (Neter et al., 1996). The metric is well-known

for being robust to changes in scale (Shardlow et al., 2021). We define it as follows:
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Definition A.2.1 (Pearson Correlation). Let the variables x = [x1, · · · , xn]

and y = [y1, · · · , yn] be two vectors of size n ∈ N (that is, n is the number of

observations for each dimension), then

rxy =

n
n∑

i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi√
n

n∑
i=1

x2
i −

(
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i=1

xi

)2
√

n
n∑

i=1

y2i −
(

n∑
i=1

yi

)2
(A.1)

is the Pearson correlation coefficient between x and y.

It makes the following assumptions:

(1) that both variables should be normally distributed,

(2) (linearity) that there exists a straight line relationship between the two variables,

(3) (homoscedasticity) that the data is equally distributed about the regression line.

Pearson’s correlation is particularly sensitive to the distribution of data, so, following

Yannakoudakis et al. (2011) we also report Spearman’s correlation which is more robust

to outliers Shardlow et al. (2020).

A.3 Spearman Rank

Alternatively, Spearman’s rank correlation, first introduced by Charles Spearman

(Spearman, 1961), is a non-parametric text that is used to measure the monotonic rela-

tionship between two variables, not necessarily linearly. We add this metric here because

it is more robust to outliers than Pearson’s correlation (Shardlow et al., 2020). It is

defined in the following way:

Definition A.3.1 (Spearman Rank Correlation). Let the variables x = [x1, · · · , xn]

and y = [y1, · · · , yn] be two vectors of size n ∈ N (that is, n is the number of

observations for each dimension), then the Spearman rank correlation is given

by

ρxy = 1−
6

n∑
i=1

d2i

n(n2 − 1)
(A.2)

where for all 1 ≤ i ≤ n ∈ N, di is the difference between the ranks of xi and

yi. In our applications, the values x1, · · · , xn and y1, · · · , yn are respectively

ranked from highest (rank 1) to lowest (rank n).
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Unlike the Pearson correlation, this metric does not carry any assumptions about the dis-

tribution of the data. It does however assume that the data must be (1) at least ordinal,

and (2) that the scores on one variable must be monotonically related to the other variable.

For both metrics, Cohen’s standard can be used to evaluate the correlation coefficient to

determine the strength of the relationship, or the effect size (Sullivan and Feinn, 2012;

Cohen, 1960). In particular, correlation coefficients between 0.10 and 0.29 represent a

small association, coefficients between 0.30 and 0.49 represent a medium association, and

coefficients of 0.50 and above represent a large association (Zou et al., 2003).
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Appendix B

ELLIPSE Marking Guidelines

The following marking guidelines were kindly provided to us by Perpetual Baffour, Re-

search Director at The Learning Agency Lab1, who was involved in the creation of the

ELLIPSE dataset in the context of the 2022 “Feedback Prize - English Language Learn-

ing” Kaggle competition.5 They most kindly agreed to us using and including the rubric in

this report, since, at the time of writing, it was not publicly available anywhere else. Note

however that they are planning on releasing this rubric on their website very soon. They

are also due to publish a paper describing the corpus and rubric in more detail (Crossley

et al., forthcoming) in the near future. An early version of this paper was shared with us

for the benefit of our study.

B.1 Key Terms and Definitions

Definition B.1.1 (Phrase). Multiple word units.

Definition B.1.2 (Grammar). The rules by which words change their forms, including

the use of word classes and grammatical morphology in English. Word classes include

prepositions, pronouns, nouns, verbs, etc. Grammatical morphology includes third person,

plural, possessive, etc.

Definition B.1.3 (Syntax). Structuring sentences according to syntactic rules related

to coordinating clauses, developing syntactic phrases (noun, verb, preposition phrases),

phrasal and clausal dependency, and transformations such as passives, relative clauses,

and negations.

Definition B.1.4 (Cohesive device). Cohesive devices are used as links between two

or more items (e.g., words, phrases, clauses) in a text to enhance text cohesion. These

include the use of conjunctions (“and”, “but”, “if”, “on the other hand”), transitions

(“first”, “next”, “finally”, “for example”), repetition of words, phrases, and ideas across

sentences and paragraphs, and the use of anaphora (pronouns replacing nouns).
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Definition B.1.5. Sentences can either be

(1) simple, independent clause,

(2) complex, with independent and dependent clauses, or

(3) compound, with two of more independent clauses.

Definition B.1.6 (Chunks). Multiple words that combine to have a single meaning.

Often memorised without knowing what the individual words mean (e.g., “How are you”

for “Hello”).

Definition B.1.7 (Lexical bundles). Multiple word units that are common in English

but are not idiomatic (“There is”). More common than collocations.

Definition B.1.8 (Collocation). Two or more words that are often used together (e.g.,

“save time”, “go to bed”, “fast food”)

Definition B.1.9 (Idiom). Multi-word unit where meaning not deducible from those of

the individual words (e.g., “kick the bucket” or “rain cats and dogs”.)

B.2 Scoring Rubric
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Phraseology Grammar Conventions

5 Flexible and effec-
tive use of a variety
of phrases, such as
idioms, collocations,
and lexical bundles,
to convey precise
and subtle mean-
ings; rare minor
inaccuracies that are
negligible.

Command of gram-
mar and usage with
few or no errors.

Consistent use of
appropriate con-
ventions to convey
meaning; spelling,
capitalisation, and
punctuation errors
nonexistent or negli-
gible.

4 Appropriate use of
a variety of phrases,
such as idioms, col-
locations, and lexical
bundles; occasional
inaccuracies and col-
loquialisms.

Minimal errors in
grammar and usage.

Generally consistent
use of appropri-
ate conventions to
convey meaning;
spelling, capitalisa-
tion, and punctua-
tion errors few and
not distracting.

3 Evident use of
phrases such as
idioms, collocations,
and lexical bundles
but without much
variety; some notice-
able repetitions and
misuses.

Some errors in gram-
mar and usage.

Developing use of
conventions to con-
vey meaning; errors
in spelling, capitali-
sation, and punctu-
ation that are some-
times distracting.

2 Narrow range of
phrases, such as
collocations and
lexical bundles, used
to convey basic and
elementary meaning;
many repetitions
and/or misuses of
phrases.

Many errors in gram-
mar and usage.

Variable use of con-
ventions; spelling,
capitalisation, and
punctuation errors
frequent and dis-
tracting.

1 Memorized chunks of
language, or simple
phrasal patterns pre-
dominate; many rep-
etitions and misuses
of phrases.

Errors in grammar
and usage through-
out.

Minimal use of con-
ventions; spelling,
capitalisation, and
punctuation errors
throughout.
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Cohesion Syntax Vocabulary Overall

5 Text organisation
consistently well
controlled using a
variety of effective
linguistic features
such as reference
and transitional
words and phrases
to connect ideas
across sentences
and paragraphs;
appropriate overlap
of ideas.

Flexible and effective
use of a full range of
syntactic structures
including simple,
compound, and
complex sentences;
there may be rare
minor and negligible
errors in sentence
formation.

Wide range of vo-
cabulary flexibly and
effectively used to
convey precise mean-
ings; skillful use of
topic-related terms
and less common
words; rare negligi-
ble inaccuracies in
word use.

Native-like fa-
cility in the use
of language with
syntactic variety,
appropriate word
choice and phrases;
well-controlled text
organisation; precise
use of grammar and
conventions; rare
language inaccu-
racies that do not
impede communica-
tion.

4 Organisation gener-
ally well controlled;
a range of cohe-
sive devices used ap-
propriately such as
reference and tran-
sitional words and
phrases to connect
ideas; generally ap-
propriate overlap of
ideas.

Appropriate use of a
variety of syntactic
structures, such as
simple, compound,
and complex sen-
tences; occasional
errors or inappropri-
ateness in sentence
formation.

Sufficient range of
vocabulary to allow
flexibility and pre-
cision; appropriate
use of topic-related
terms and less com-
mon lexical items.

Facility in the use
of language with
syntactic variety and
range of words and
phrases; controlled
organisation; accu-
racy in grammar
and conventions;
occasional language
inaccuracies that
rarely impede com-
munication.

3 Organisation gener-
ally controlled; co-
hesive devices used
but limited in type;
some repetitive, me-
chanical, or faulty
use of cohesion use
within and/or be-
tween sentences and
paragraphs.

Simple, compound,
and complex syntac-
tic structures present
although the range
may be limited; some
apparent errors in
sentence formation,
especially in more
complex sentences.

Minimally adequate
range of vocabulary
for the topic; no
precise use of sub-
tle word meanings;
topic related terms
only used occasion-
ally; attempts to use
less common vocab-
ulary but with some
inaccuracy.

Facility limited to
the use of com-
mon structures and
generic vocabulary;
organisation gen-
erally controlled
although connection
sometimes absent or
unsuccessful; errors
in grammar and
syntax and usage.
Communication is
impeded by language
inaccuracies in some
cases.

2 Organisation only
partially developed
with a lack of logical
sequencing of ideas;
some basic cohesive
devices used but
with inaccuracy or
repetition.

Some sentence varia-
tion used; many sen-
tence structure prob-
lems.

Narrow range of vo-
cabulary to convey
basic and elementary
meaning; topic re-
lated terms used in-
appropriately; errors
in word formation
and word choice that
may distort mean-
ings.

Inconsistent facility
in sentence forma-
tion, word choice,
and mechanics; or-
ganisation partially
developed but may
be missing or un-
successful. Com-
munication impeded
in many instances
by language inaccu-
racies.

1 No clear control
of organisation;
cohesive devices
not present or un-
successfully used;
presentation of ideas
unclear.

Pervasive and ba-
sic errors in sentence
structure and word
order that cause con-
fusion; basic sen-
tences errors com-
mon.

Limited vocabulary
often inappropri-
ately used; limited
control of word
choice and word
forms; little attempt
to use topic-related
terms.

A limited range
of familiar words
or phrases loosely
strung together;
frequent errors in
grammar (including
syntax) and usage.
Communication
impeded in most
cases by language
inaccuracies.
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